Skip to main content

Advertisement

Log in

Primary ovarian insufficiency in classic galactosemia: current understanding and future research opportunities

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Classic galactosemia is an inborn error of the metabolism with devastating consequences. Newborn screening has been successful in markedly reducing the acute neonatal symptoms from this disorder. The dramatic response to dietary treatment is one of the major success stories of newborn screening. However, as children with galactosemia achieve adulthood, they face long-term complications. A majority of women with classic galactosemia develop primary ovarian insufficiency and resulting morbidity. The underlying pathophysiology of this complication is not clear. This review focuses on the reproductive issues seen in girls and women with classic galactosemia. Literature on the effects of classic galactosemia on the female reproductive system was reviewed by an extensive Pubmed search (publications from January 1975 to January 2017) using the keywords: galactosemia, ovarian function/dysfunction, primary ovarian insufficiency/failure, FSH, oxidative stress, fertility preservation. In addition, articles cited in the search articles and literature known to the authors was also included in the review. Our understanding of the role of galactose metabolism in the ovary is limited and the pathogenic mechanisms involved in causing primary ovarian insufficiency are unclear. The relative rarity of galactosemia makes it difficult to accumulate data to determine factors defining timing of ovarian dysfunction or treatment/fertility preservation options for this group of women. In this review, we present reproductive challenges faced by women with classic galactosemia, highlight the gaps in our understanding of mechanisms leading to primary ovarian insufficiency in this population, discuss new advances in fertility preservation options, and recommend collaboration between reproductive medicine and metabolic specialists to improve fertility in these women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albright FS,P, Fraser R. A syndrome characterized by primary ovarian insufficiency and decreased stature. Am J Med Sci. 1942;204:625–48.

    Article  Google Scholar 

  2. Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–14. https://doi.org/10.1056/NEJMcp0808697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol. 1986;67(4):604–6.

    CAS  PubMed  Google Scholar 

  4. Rafique S, Sterling EW, Nelson LM. A new approach to primary ovarian insufficiency. Obstet Gynecol Clin N Am. 2012;39(4):567–86. https://doi.org/10.1016/j.ogc.2012.09.007.

    Article  Google Scholar 

  5. Hoyos LR, Thakur M. Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency. J Assist Reprod Genet. 2017;34(3):315–23. https://doi.org/10.1007/s10815-016-0854-6.

    Article  PubMed  Google Scholar 

  6. Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Welt CK, Rebar RW, et al. The FMR1 premutation and reproduction. Fertil Steril. 2007;87(3):456–65. https://doi.org/10.1016/j.fertnstert.2006.09.004.

    Article  CAS  PubMed  Google Scholar 

  7. Laissue P, Christin-Maitre S, Touraine P, Kuttenn F, Ritvos O, Aittomaki K, et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur J Endocrinol. 2006;154(5):739–44. https://doi.org/10.1530/eje.1.02135.

    Article  CAS  PubMed  Google Scholar 

  8. Mansouri MR, Schuster J, Badhai J, Stattin EL, Losel R, Wehling M, et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17(23):3776–83. https://doi.org/10.1093/hmg/ddn274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci U S A. 2006;103(1):224–9. https://doi.org/10.1073/pnas.0506736102.

    Article  CAS  PubMed  Google Scholar 

  10. Fonseca DJ, Garzon E, Lakhal B, Braham R, Ojeda D, Elghezal H, et al. Screening for mutations of the FOXO4 gene in premature ovarian failure patients. Reprod BioMed Online. 2012;24(3):339–41. https://doi.org/10.1016/j.rbmo.2011.11.017.

    Article  CAS  PubMed  Google Scholar 

  11. Lacombe A, Lee H, Zahed L, Choucair M, Muller JM, Nelson SF, et al. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am J Hum Genet. 2006;79(1):113–9. https://doi.org/10.1086/505406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bione S, Rizzolio F, Sala C, Ricotti R, Goegan M, Manzini MC, et al. Mutation analysis of two candidate genes for premature ovarian failure, DACH2 and POF1B. Hum Reprod (Oxford, England). 2004;19(12):2759–66. https://doi.org/10.1093/humrep/deh502.

    Article  CAS  Google Scholar 

  13. Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, Banfi S, et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62(3):533–41. https://doi.org/10.1086/301761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vilodre LC, Kohek MB, Spritzer PM. Screening of follicle-stimulating hormone receptor gene in women with premature ovarian failure in southern Brazil and associations with phenotype. J Endocrinol Investig. 2008;31(6):552–7. https://doi.org/10.1007/bf03346407.

    Article  CAS  Google Scholar 

  15. Cordts EB, Santos MC, Bianco B, Barbosa CP, Christofolini DM. Are FSHR polymorphisms risk factors to premature ovarian insufficiency? Gynecol Endocrinol. 2015;31(8):663–6. https://doi.org/10.3109/09513590.2015.1032933.

    Article  CAS  PubMed  Google Scholar 

  16. Dixit H, Rao L, Padmalatha V, Raseswari T, Kapu AK, Panda B, et al. Genes governing premature ovarian failure. Reprod BioMed Online. 2010;20(6):724–40. https://doi.org/10.1016/j.rbmo.2010.02.018.

    Article  CAS  PubMed  Google Scholar 

  17. Chand AL, Harrison CA, Shelling AN. Inhibin and premature ovarian failure. Hum Reprod Update. 2010;16(1):39–50. https://doi.org/10.1093/humupd/dmp031.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Chen ZJ, Qin Y, Shi Y, Wang S, Choi Y, et al. Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am J Hum Genet. 2008;82(6):1342–8. https://doi.org/10.1016/j.ajhg.2008.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet. 2007;81(3):576–81. https://doi.org/10.1086/519496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lourenco D, Brauner R, Lin L, De Perdigo A, Weryha G, Muresan M, et al. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–10. https://doi.org/10.1056/NEJMoa0806228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le Quesne SP, Williams HJ, James C, Tekman M, Stanescu HC, Kleta R, et al. STAG3 truncating variant as the cause of primary ovarian insufficiency. Eur J Hum Genet. 2016;24(1):135–8. https://doi.org/10.1038/ejhg.2015.107.

    Article  CAS  Google Scholar 

  22. Wang J, Zhang W, Jiang H, Wu BL. Mutations in HFM1 in recessive primary ovarian insufficiency. N Engl J Med. 2014;370(10):972–4. https://doi.org/10.1056/NEJMc1310150.

    Article  CAS  PubMed  Google Scholar 

  23. AlAsiri S, Basit S, Wood-Trageser MA, Yatsenko SA, Jeffries EP, Surti U, et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest. 2015;125(1):258–62. https://doi.org/10.1172/jci78473.

    Article  PubMed  Google Scholar 

  24. Wood-Trageser MA, Gurbuz F, Yatsenko SA, Jeffries EP, Kotan LD, Surti U, et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet. 2014;95(6):754–62. https://doi.org/10.1016/j.ajhg.2014.11.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mandon-Pepin B, Touraine P, Kuttenn F, Derbois C, Rouxel A, Matsuda F, et al. Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur J Endocrinol. 2008;158(1):107–15. https://doi.org/10.1530/eje-07-0400.

    Article  CAS  PubMed  Google Scholar 

  26. Qin Y, Guo T, Li G, Tang TS, Zhao S, Jiao X, et al. CSB-PGBD3 mutations cause premature ovarian failure. PLoS Genet. 2015;11(7):e1005419. https://doi.org/10.1371/journal.pgen.1005419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jaillard S, Akloul L, Beaumont M, Hamdi-Roze H, Dubourg C, Odent S, et al. Array-CGH diagnosis in ovarian failure: identification of new molecular actors for ovarian physiology. J Ovarian Res. 2016;9(1):63. https://doi.org/10.1186/s13048-016-0272-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21(6):787–808. https://doi.org/10.1093/humupd/dmv036.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91(2):183–98. https://doi.org/10.1111/cge.12921.

    Article  CAS  PubMed  Google Scholar 

  30. Cox L, Liu JH. Primary ovarian insufficiency: an update. Int J Women’s Health. 2014;6:235–43. https://doi.org/10.2147/ijwh.s37636.

    Google Scholar 

  31. Jin M, Yu Y, Huang H. An update on primary ovarian insufficiency. Sci China Life Sci. 2012;55(8):677–86. https://doi.org/10.1007/s11427-012-4355-2.

    Article  CAS  PubMed  Google Scholar 

  32. Berry GT. Galactosemia and amenorrhea in the adolescent. Ann N Y Acad Sci. 2008;1135:112–7. https://doi.org/10.1196/annals.1429.038.

    Article  PubMed  Google Scholar 

  33. Fridovich-Keil JL, Gubbels CS, Spencer JB, Sanders RD, Land JA, Rubio-Gozalbo E. Ovarian function in girls and women with GALT-deficiency galactosemia. J Inherit Metab Dis. 2011;34(2):357–66. https://doi.org/10.1007/s10545-010-9221-4.

    Article  CAS  PubMed  Google Scholar 

  34. Rubio-Gozalbo ME, Gubbels CS, Bakker JA, Menheere PP, Wodzig WK, Land JA. Gonadal function in male and female patients with classic galactosemia. Hum Reprod Update. 2010;16(2):177–88. https://doi.org/10.1093/humupd/dmp038.

    Article  CAS  PubMed  Google Scholar 

  35. Berry GT. Classic galactosemia and clinical variant galactosemia. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington, Seattle University of Washington; 1993. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., Seattle (WA).

    Google Scholar 

  36. Berry GT, Nissim I, Lin Z, Mazur AT, Gibson JB, Segal S. Endogenous synthesis of galactose in normal men and patients with hereditary galactosaemia. Lancet. 1995;346(8982):1073–4.

    Article  CAS  PubMed  Google Scholar 

  37. Segal S. Galactosemia unsolved. Eur J Pediatr. 1995;154(7 Suppl 2):S97–102.

    Article  CAS  PubMed  Google Scholar 

  38. Coelho AI, Berry GT, Rubio-Gozalbo ME. Galactose metabolism and health. Curr Opin Clin Nutr Metab Care. 2015;18(4):422–7. https://doi.org/10.1097/mco.0000000000000189.

    Article  CAS  PubMed  Google Scholar 

  39. Berry GT. Disorders of galactose metabolism. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn metabolic diseases: diagnosis and treatment. 5th ed. New York: Springer; 2012.

    Google Scholar 

  40. Pyhtila BM, Shaw KA, Neumann SE, Fridovich-Keil JL. Newborn screening for galactosemia in the United States: looking back, looking around, and looking ahead. JIMD Rep. 2014; https://doi.org/10.1007/8904_2014_302.

  41. Hoefnagel D, Wurster-Hill D, Child EL. Ovarian failure in galactosaemia. Lancet. 1979;2(8153):1197.

    Article  CAS  PubMed  Google Scholar 

  42. Kaufman F, Kogut MD, Donnell GN, Koch H, Goebelsmann U. Ovarian failure in galactosaemia. Lancet. 1979;2(8145):737–8.

    Article  CAS  PubMed  Google Scholar 

  43. Komrower G. Ovarian failure in galactosaemia. Lancet. 1979;2(8150):1021.

    Article  CAS  PubMed  Google Scholar 

  44. Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, Koch R. Hypergonadotropic hypogonadism in female patients with galactosemia. N Engl J Med. 1981;304(17):994–8. https://doi.org/10.1056/nejm198104233041702.

    Article  CAS  PubMed  Google Scholar 

  45. Kaufman FR, Donnell GN, Roe TF, Kogut MD. Gonadal function in patients with galactosaemia. J Inherit Metab Dis. 1986;9(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  46. Fraser IS, Russell P, Greco S, Robertson DM. Resistant ovary syndrome and premature ovarian failure in young women with galactosaemia. Clin Reprod Fertil. 1986;4(2):133–8.

    CAS  PubMed  Google Scholar 

  47. Dessart Y, Odievre M, Evain D, Chaussain JL. Ovarian insufficiency and galactosemia. Archives francaises de pediatrie. 1982;39(5):321–2.

    CAS  PubMed  Google Scholar 

  48. Gubbels CS, Kuppens SM, Bakker JA, Konings CJ, Wodzig KW, de Sain-van der Velden MG, et al. Pregnancy in classic galactosemia despite undetectable anti-Mullerian hormone. Fertil Steril. 2009;91(4):1293.e1213–96. https://doi.org/10.1016/j.fertnstert.2008.12.031.

    Article  Google Scholar 

  49. Sauer MV, Kaufman FR, Paulson RJ, Lobo RA. Pregnancy after oocyte donation to a woman with ovarian failure and classical galactosemia. Fertil Steril. 1991;55(6):1197–9.

    Article  CAS  PubMed  Google Scholar 

  50. Hypogonadism and galactosemia. N Engl J Med. 1981;305(8):464–465. https://doi.org/10.1056/nejm198108203050819.

  51. Beauvais P, Guilhaume A. Ovarian insufficiency in congenital galactosemia. Presse medicale (Paris, France: 1983). 1984;13(44):2685–7.

    CAS  Google Scholar 

  52. Schwarz HP, Zimmermann A, Carasso A, Zuppinger K. Feminization in a galactosemic girl in the presence of hypergonadotropic hypogonadism. Acta Endocrinol Suppl (Copenh). 1986;279:428–33.

    CAS  Google Scholar 

  53. Lopez Gavilanez E, Herrera Pombo JL. Hypergonadotropic hypogonadism in a woman with galactosemia. Revista Clinica Espanola. 1992;190(2):99.

    Google Scholar 

  54. Gubbels CS, Land JA, Evers JL, Bierau J, Menheere PP, Robben SG, et al. Primary ovarian insufficiency in classic galactosemia: role of FSH dysfunction and timing of the lesion. J Inherit Metab Dis. 2013;36(1):29–34. https://doi.org/10.1007/s10545-012-9497-7.

    Article  CAS  PubMed  Google Scholar 

  55. Morrow RJ, Atkinson AB, Carson DJ, Carson NA, Sloan JM, Traub AI. Ovarian failure in a young woman with galactosaemia. Ulster Med J. 1985;54(2):218–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Robinson AC, Dockeray CJ, Cullen MJ, Sweeney EC. Hypergonadotrophic hypogonadism in classical galactosaemia: evidence for defective oogenesis. Case report. Br J Obstet Gynaecol. 1984;91(2):199–200.

    Article  CAS  PubMed  Google Scholar 

  57. Levy HL. Reproductive effects of maternal metabolic disorders: implications for pediatrics and obstetrics. Turk J Pediatr. 1996;38(3):335–44.

    CAS  PubMed  Google Scholar 

  58. Levy HL, Driscoll SG, Porensky RS, Wender DF. Ovarian failure in galactosemia. N Engl J Med. 1984;310(1):50.

    CAS  PubMed  Google Scholar 

  59. Kaufman FR, Xu YK, Ng WG, Silva PD, Lobo RA, Donnell GN. Gonadal function and ovarian galactose metabolism in classic galactosemia. Acta Endocrinol. 1989;120(2):129–33.

    CAS  PubMed  Google Scholar 

  60. Heidenreich RA, Mallee J, Rogers S, Segal S. Developmental and tissue-specific modulation of rat galactose-1-phosphate uridyltransferase steady state messenger RNA and specific activity levels. Pediatr Res. 1993;34(4):416–9. https://doi.org/10.1203/00006450-199310000-00006.

    Article  CAS  PubMed  Google Scholar 

  61. Xu YK, Ng WG, Kaufman FR, Lobo RA, Donnell GN. Galactose metabolism in human ovarian tissue. Pediatr Res. 1989;25(2):151–5. https://doi.org/10.1203/00006450-198902000-00015.

    Article  CAS  PubMed  Google Scholar 

  62. Jozwik M, Jozwik M, Teng C, Battaglia FC. Concentrations of monosaccharides and their amino and alcohol derivatives in human preovulatory follicular fluid. Mol Hum Reprod. 2007;13(11):791–6. https://doi.org/10.1093/molehr/gam060.

    Article  CAS  PubMed  Google Scholar 

  63. Forges T, Monnier-Barbarino P, Leheup B, Jouvet P. Pathophysiology of impaired ovarian function in galactosaemia. Hum Reprod Update. 2006;12(5):573–84. https://doi.org/10.1093/humupd/dml031.

    Article  CAS  PubMed  Google Scholar 

  64. Chen YT, Mattison DR, Feigenbaum L, Fukui H, Schulman JD. Reduction in oocyte number following prenatal exposure to a diet high in galactose. Science (New York, NY). 1981;214(4525):1145–7.

    Article  CAS  Google Scholar 

  65. Tang M, Siddiqi A, Witt B, Yuzyuk T, Johnson B, Fraser N, et al. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) - deficient mouse model. Eur J Hum Genet. 2014;22(10):1172–9. https://doi.org/10.1038/ejhg.2014.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song X, Bao M, Li D, Li YM. Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev. 1999;108(3):239–51.

    Article  CAS  PubMed  Google Scholar 

  67. Jumbo-Lucioni PP, Hopson ML, Hang D, Liang Y, Jones DP, Fridovich-Keil JL. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis Model Mech. 2013;6(1):84–94. https://doi.org/10.1242/dmm.010207.

    Article  CAS  PubMed  Google Scholar 

  68. Slepak T, Tang M, Addo F, Lai K. Intracellular galactose-1-phosphate accumulation leads to environmental stress response in yeast model. Mol Genet Metab. 2005;86(3):360–71. https://doi.org/10.1016/j.ymgme.2005.08.002.

    Article  CAS  PubMed  Google Scholar 

  69. Meyer WR, Doyle MB, Grifo JA, Lipetz KJ, Oates PJ, DeCherney AH, et al. Aldose reductase inhibition prevents galactose-induced ovarian dysfunction in the Sprague-Dawley rat. Am J Obstet Gynecol. 1992;167(6):1837–43.

    Article  CAS  PubMed  Google Scholar 

  70. Liu G, Hale GE, Hughes CL. Galactose metabolism and ovarian toxicity. Reprod Toxicol (Elmsford, NY). 2000;14(5):377–84.

    Article  CAS  Google Scholar 

  71. Thakur M, Shaeib F, Khan SN, Kohan-Ghadr HR, Jeelani R, Aldhaheri SR, et al. Galactose and its metabolites deteriorate metaphase II mouse oocyte quality and subsequent embryo development by disrupting the spindle structure. Sci Rep. 2017;7(1):231. https://doi.org/10.1038/s41598-017-00159-y.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Coss KP, Treacy EP, Cotter EJ, Knerr I, Murray DW, Shin YS, et al. Systemic gene dysregulation in classical galactosaemia: is there a central mechanism? Mol Genet Metab. 2014;113(3):177–87. https://doi.org/10.1016/j.ymgme.2014.08.004.

    Article  CAS  PubMed  Google Scholar 

  73. Banerjee S, Chakraborty P, Saha P, Bandyopadhyay SA, Banerjee S, Kabir SN. Ovotoxic effects of galactose involve attenuation of follicle-stimulating hormone bioactivity and up-regulation of granulosa cell p53 expression. PLoS One. 2012;7(2):e30709. https://doi.org/10.1371/journal.pone.0030709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ulloa-Aguirre A, Timossi C, Damian-Matsumura P, Dias JA. Role of glycosylation in function of follicle-stimulating hormone. Endocrine. 1999;11(3):205–15. https://doi.org/10.1385/endo:11:3:205.

    Article  CAS  PubMed  Google Scholar 

  75. Ng WG, Xu YK, Kaufman FR, Donnell GN. Deficit of uridine diphosphate galactose in galactosaemia. J Inherit Metab Dis. 1989;12(3):257–66.

    Article  CAS  PubMed  Google Scholar 

  76. Lai K, Langley SD, Khwaja FW, Schmitt EW, Elsas LJ. GALT deficiency causes UDP-hexose deficit in human galactosemic cells. Glycobiology. 2003;13(4):285–94. https://doi.org/10.1093/glycob/cwg033.

    Article  CAS  PubMed  Google Scholar 

  77. Gubbels CS, Thomas CM, Wodzig WK, Olthaar AJ, Jaeken J, Sweep FC, et al. FSH isoform pattern in classic galactosemia. J Inherit Metab Dis. 2011;34(2):387–90. https://doi.org/10.1007/s10545-010-9180-9.

    Article  CAS  PubMed  Google Scholar 

  78. Lai K, Tang M, Yin X, Klapper H, Wierenga K, Elsas L. ARHI: a new target of galactose toxicity in classic galactosemia. Biosci Hypotheses. 2008;1(5):263–71. https://doi.org/10.1016/j.bihy.2008.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu G, Shi F, Blas-Machado U, Yu R, Davis VL, Foster WG, et al. Dietary galactose inhibits GDF-9 mediated follicular development in the rat ovary. Reprod Toxicol (Elmsford, NY). 2006;21(1):26–33. https://doi.org/10.1016/j.reprotox.2005.07.001.

    Article  CAS  Google Scholar 

  80. ten Hoedt AE, Maurice-Stam H, Boelen CC, Rubio-Gozalbo ME, van Spronsen FJ, Wijburg FA, et al. Parenting a child with phenylketonuria or galactosemia: implications for health-related quality of life. J Inherit Metab Dis. 2011;34(2):391–8. https://doi.org/10.1007/s10545-010-9267-3.

    Article  PubMed  PubMed Central  Google Scholar 

  81. van Erven B, Berry GT, Cassiman D, Connolly G, Forga M, Gautschi M, et al. Fertility in adult women with classic galactosemia and primary ovarian insufficiency. Fertil Steril. 2017;108(1):168–74. https://doi.org/10.1016/j.fertnstert.2017.05.013.

    Article  PubMed  Google Scholar 

  82. Badik JR, Castaneda U, Gleason TJ, Spencer JB, Epstein MP, Ficicioglu C, et al. Ovarian function in Duarte galactosemia. Fertil Steril. 2011;96(2):469–473.e461. https://doi.org/10.1016/j.fertnstert.2011.05.088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gubbels CS, Land JA, Rubio-Gozalbo ME. Fertility and impact of pregnancies on the mother and child in classic galactosemia. Obstet Gynecol Surv. 2008;63(5):334–43. https://doi.org/10.1097/OGX.0b013e31816ff6c5.

    Article  PubMed  Google Scholar 

  84. Schadewaldt P, Hammen HW, Kamalanathan L, Wendel U, Schwarz M, Bosch AM, et al. Biochemical monitoring of pregnancy and breast feeding in five patients with classical galactosaemia--and review of the literature. Eur J Pediatr. 2009;168(6):721–9. https://doi.org/10.1007/s00431-008-0832-9.

    Article  CAS  PubMed  Google Scholar 

  85. de Jongh S, Vreken P, IJst L, Wanders RJ, Jakobs C, Bakker HD. Spontaneous pregnancy in a patient with classical galactosaemia. J Inherit Metab Dis. 1999;22(6):754–5.

    Article  PubMed  Google Scholar 

  86. Briones P, Giros M, Martinez V. Second spontaneous pregnancy in a galactosaemic woman homozygous for the Q188R mutation. J Inherit Metab Dis. 2001;24(1):79–80.

    Article  CAS  PubMed  Google Scholar 

  87. Bernardo MM, Meng Y, Lockett J, Dyson G, Dombkowski A, Kaplun A, et al. Maspin reprograms the gene expression profile of prostate carcinoma cells for differentiation. Genes Cancer. 2011;2(11):1009–22. https://doi.org/10.1177/1947601912440170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jumbo-Lucioni PP, Garber K, Kiel J, Baric I, Berry GT, Bosch A, et al. Diversity of approaches to classic galactosemia around the world: a comparison of diagnosis, intervention, and outcomes. J Inherit Metab Dis. 2012;35(6):1037–49. https://doi.org/10.1007/s10545-012-9477-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Drobac S, Rubin K, Rogol AD, Rosenfield RL. A workshop on pubertal hormone replacement options in the United States. J Pediatric Endocrinol Metab. 2006;19(1):55–64.

    Article  Google Scholar 

  90. Kiess W, Conway G, Ritzen M, Rosenfield R, Bernasconi S, Juul A, et al. Induction of puberty in the hypogonadal girl—practices and attitudes of pediatric endocrinologists in Europe. Horm Res. 2002;57(1–2):66–71.

    CAS  PubMed  Google Scholar 

  91. Panis B, Forget PP, van Kroonenburgh MJ, Vermeer C, Menheere PP, Nieman FH, et al. Bone metabolism in galactosemia. Bone. 2004;35(4):982–7. https://doi.org/10.1016/j.bone.2004.06.004.

    Article  CAS  PubMed  Google Scholar 

  92. Panis B, Vermeer C, van Kroonenburgh MJ, Nieman FH, Menheere PP, Spaapen LJ, et al. Effect of calcium, vitamins K1 and D3 on bone in galactosemia. Bone. 2006;39(5):1123–9. https://doi.org/10.1016/j.bone.2006.05.002.

    Article  CAS  PubMed  Google Scholar 

  93. Batey LA, Welt CK, Rohr F, Wessel A, Anastasoaie V, Feldman HA, et al. Skeletal health in adult patients with classic galactosemia. Osteoporos Int. 2013;24(2):501–9. https://doi.org/10.1007/s00198-012-1983-0.

    Article  CAS  PubMed  Google Scholar 

  94. Gajewska J, Ambroszkiewicz J, Radomyska B, Chelchowska M, Oltarzewski M, Laskowska-Klita T, et al. Serum markers of bone turnover in children and adolescents with classic galactosemia. Adv Med Sci. 2008;53(2):214–20. https://doi.org/10.2478/v10039-008-0026-8.

    Article  CAS  PubMed  Google Scholar 

  95. Rubio-Gozalbo ME, Hamming S, van Kroonenburgh MJ, Bakker JA, Vermeer C, Forget PP. Bone mineral density in patients with classic galactosaemia. Arch Dis Child. 2002;87(1):57–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaufman FR, Loro ML, Azen C, Wenz E, Gilsanz V. Effect of hypogonadism and deficient calcium intake on bone density in patients with galactosemia. J Pediatr. 1993;123(3):365–70.

    Article  CAS  PubMed  Google Scholar 

  97. Panis B, van Kroonenburgh MJ, Rubio-Gozalbo ME. Proposal for the prevention of osteoporosis in paediatric patients with classical galactosaemia. J Inherit Metab Dis. 2007;30(6):982. https://doi.org/10.1007/s10545-007-0676-x.

    Article  CAS  PubMed  Google Scholar 

  98. Manis FR, Cohn LB, McBride-Chang C, Wolff JA, Kaufman FR. A longitudinal study of cognitive functioning in patients with classical galactosaemia, including a cohort treated with oral uridine. J Inherit Metab Dis. 1997;20(4):549–55.

    Article  CAS  PubMed  Google Scholar 

  99. Tang M, Odejinmi SI, Vankayalapati H, Wierenga KJ, Lai K. Innovative therapy for classic galactosemia—tale of two HTS. Mol Genet Metab. 2012;105(1):44–55. https://doi.org/10.1016/j.ymgme.2011.09.028.

    Article  CAS  PubMed  Google Scholar 

  100. Loren AW, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31(19):2500–10. https://doi.org/10.1200/jco.2013.49.2678.

    Article  PubMed  PubMed Central  Google Scholar 

  101. ACOG: Committee Opinion No. 584: oocyte cryopreservation. Obstet Gynecol. 2014;123 (1):221–222. https://doi.org/10.1097/01.AOG.0000441355.66434.6d.

  102. Salama M, Woodruff TK. New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Rev. 2015;34(4):807–22. https://doi.org/10.1007/s10555-015-9600-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van Erven B, Gubbels CS, van Golde RJ, Dunselman GA, Derhaag JG, de Wert G, et al. Fertility preservation in female classic galactosemia patients. Orphanet J Rare Dis. 2013;8:107. https://doi.org/10.1186/1750-1172-8-107.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Forges T, Monnier P, Leheup B, Cheillan D, Brivet M, Barbarino A, et al. Ovarian tissue cryopreservation and subsequent spontaneous pregnancies in a patient with classic galactosemia. Fertil Steril. 2011;95(1):290.e291–3. https://doi.org/10.1016/j.fertnstert.2010.06.014.

    Article  Google Scholar 

  105. Recommendations for gamete and embryo donation: a committee opinion. Fertil Steril. 2013;99 (1):47–62. https://doi.org/10.1016/j.fertnstert.2012.09.037.

  106. Shea LD, Woodruff TK, Shikanov A. Bioengineering the ovarian follicle microenvironment. Annu Rev Biomed Eng. 2014;16:29–52. https://doi.org/10.1146/annurev-bioeng-071813-105131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Skory RM, Xu Y, Shea LD, Woodruff TK. Engineering the ovarian cycle using in vitro follicle culture. Hum Reprod (Oxford, England). 2015;30(6):1386–95. https://doi.org/10.1093/humrep/dev052.

    Article  CAS  Google Scholar 

  108. Zhai J, Yao G, Dong F, Bu Z, Cheng Y, Sato Y, et al. In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients. J Clin Endocrinol Metab. 2016;101(11):4405–12. https://doi.org/10.1210/jc.2016-1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kawamura K, Kawamura N, Hsueh AJ. Activation of dormant follicles: a new treatment for premature ovarian failure? Curr Opin Obstet Gynecol. 2016;28(3):217–22. https://doi.org/10.1097/gco.0000000000000268.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Truman AM, Tilly JL, Woods DC. Ovarian regeneration: the potential for stem cell contribution in the postnatal ovary to sustained endocrine function. Mol Cell Endocrinol. 2017;445:74–84. https://doi.org/10.1016/j.mce.2016.10.012.

    Article  CAS  PubMed  Google Scholar 

  111. Woodruff TK. Oncofertility: a grand collaboration between reproductive medicine and oncology. Reproduction (Cambridge, England). 2015;150(3):S1–10. https://doi.org/10.1530/rep-15-0163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the health care providers and researchers for valuable contributions regarding the care of patients with classic galactosemia presented in this paper. This work is dedicated to women with galactosemia and their families.

Author’s role

Conception and design (MT), search strategy (MT, GF, EEP), data extraction and analysis (MT, GF, EEP), interpretation (MT, GF, EEP), drafting the manuscript (MT), critical revision of manuscript (MT, GF, EEP), final approval of manuscript to be published (MT, GF, EEP).

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mili Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Feldman, G. & Puscheck, E.E. Primary ovarian insufficiency in classic galactosemia: current understanding and future research opportunities. J Assist Reprod Genet 35, 3–16 (2018). https://doi.org/10.1007/s10815-017-1039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1039-7

Keywords

Navigation