Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 11, pp 1529–1535 | Cite as

Assisted reproduction and risk of preterm birth in singletons by infertility diagnoses and treatment modalities: a population-based study

  • Galit Levi DunietzEmail author
  • Claudia Holzman
  • Yujia Zhang
  • Chenxi Li
  • David Todem
  • Sheree L. Boulet
  • Patricia McKane
  • Dmitry M. Kissin
  • Glenn Copeland
  • Dana Bernson
  • Michael P. Diamond
Assisted Reproduction Technologies



The purpose of this study is to examine the spectrum of infertility diagnoses and assisted reproductive technology (ART) treatments in relation to risk of preterm birth (PTB) in singletons.


Population-based assisted reproductive technology surveillance data for 2000–2010 were linked with birth certificates from three states: Florida, Massachusetts, and Michigan, resulting in a sample of 4,370,361 non-ART and 28,430 ART-related singletons. Logistic regression models with robust variance estimators were used to compare PTB risk among singletons conceived with and without ART, the former grouped by parental infertility diagnoses and treatment modalities. Demographic and pregnancy factors were included in adjusted analyses.


ART was associated with increased PTB risk across all infertility diagnosis groups and treatment types: for conventional ART, adjusted relative risks ranged from 1.4 (95% CI 1.0, 1.9) for male infertility to 2.4 (95% CI 1.8, 3.3) for tubal ligation. Adding intra-cytoplasmic sperm injection and/or assisted hatching to conventional ART treatment did not alter associated PTB risks. Singletons conceived by mothers without infertility diagnosis and with donor semen had an increased PTB risk relative to non-ART singletons.


PTB risk among ART singletons is increased within each treatment type and all underlying infertility diagnosis, including male infertility. Preterm birth in ART singletons may be attributed to parental infertility, ART treatments, or their combination.


Assisted reproductive technology Infertility Preterm birth Intra-cytoplasmic sperm injection Assisted hatching Donor oocytes or embryos 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Financial disclosures

M.P.D is a stockholder in and on the Board of Directors of Advanced Reproductive Care, and has received a grant from Serono.


This research was supported in part by a T32 Grant from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (T32-HD046377).

Ethical approval

The study received approval from the Institutional Review Boards of Florida, Massachusetts, Michigan, and the CDC.


The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.


  1. 1.
    Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63. doi: 10.1097/01.aog.0000114989.84822.51.CrossRefPubMedGoogle Scholar
  2. 2.
    McDonald SD, Han Z, Mulla S, Murphy KE, Beyene J, Ohlsson A. Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol. 2009;146(2):138–48. doi: 10.1016/j.ejogrb.2009.05.035.CrossRefPubMedGoogle Scholar
  3. 3.
    Xu XK, Wang YA, Li Z, Lui K, Sullivan EA. Risk factors associated with preterm birth among singletons following assisted reproductive technology in Australia 2007–2009–a population-based retrospective study. BMC Pregnan Childb. 2014;14(1):406.CrossRefGoogle Scholar
  4. 4.
    Messerlian C, Maclagan L, Basso O. Infertility and the risk of adverse pregnancy outcomes: a systematic review and meta-analysis. Hum Reprod. 2013;28(1):125–37. doi: 10.1093/humrep/des347.CrossRefPubMedGoogle Scholar
  5. 5.
    Basso O, Baird DD. Infertility and preterm delivery, birthweight, and caesarean section: a study within the Danish National Birth Cohort. Hum Reprod. 2003;18(11):2478–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Dunietz GL, Holzman C, McKane P, Li C, Boulet SL, Todem D, et al. Assisted reproductive technology and the risk of preterm birth among primiparas. Fertil Steril. 2015; doi: 10.1016/j.fertnstert.2015.01.015.
  7. 7.
    Kawwass JF, Crawford S, Kissin DM, Session DR, Boulet S, Jamieson DJ. Tubal factor infertility and perinatal risk after assisted reproductive technology. Obstet Gynecol. 2013;121(6):1263–71. doi: 10.1097/AOG.0b013e31829006d9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7. doi: 10.1056/NEJMoa010806.CrossRefPubMedGoogle Scholar
  9. 9.
    Stern JE, Luke B, Tobias M, Gopal D, Hornstein MD, Diop H. Adverse pregnancy and birth outcomes associated with underlying diagnosis with and without assisted reproductive technology treatment. Fertil Steril. 2015;103(6):1438–45.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Levi Dunietz G, Holzman C, Zhang Y, Talge NM, Li C, Todem D, et al. Assisted reproductive technology and newborn size in singletons resulting from fresh and cryopreserved embryos transfer. PLoS One. 2017;12(1):e0169869. doi: 10.1371/journal.pone.0169869.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mneimneh AS, Boulet SL, Sunderam S, Zhang Y, Jamieson DJ, Crawford S, et al. States monitoring assisted reproductive technology (SMART) collaborative: data collection, linkage, dissemination, and use. J Women’s Health (Larchmt). 2013;22(7):571–7. doi: 10.1089/jwh.2013.4452.CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Cohen B, Macaluso M, Zhang Z, Durant T, Nannini A. Probabilistic linkage of assisted reproductive technology information with vital records, Massachusetts 1997–2000. Matern Child Health J. 2012;16(8):1703–8. doi: 10.1007/s10995-011-0877-7.CrossRefPubMedGoogle Scholar
  13. 13.
    Bieler GS, Brown GG, Williams RL, Brogan DJ. Estimating model-adjusted risks, risk differences, and risk ratios from complex survey data. Am J Epidemiol. 2010;171(5):618–23. doi: 10.1093/aje/kwp440.CrossRefPubMedGoogle Scholar
  14. 14.
    Yogev Y, Melamed N, Bardin R, Tenenbaum-Gavish K, Ben-Shitrit G, Ben-Haroush A. Pregnancy outcome at extremely advanced maternal age. Am J Obstet Gynecol. 2010;203(6):558. e1-. e7CrossRefPubMedGoogle Scholar
  15. 15.
    Luke B, Brown MB, Grainger DA, Stern JE, Klein N, Cedars MI, et al. The effect of early fetal losses on singleton assisted-conception pregnancy outcomes. Fertil Steril. 2009;91(6):2578–85.CrossRefPubMedGoogle Scholar
  16. 16.
    Pinborg A, Lidegaard Ø, la Cour FN, Andersen AN. Consequences of vanishing twins in IVF/ICSI pregnancies. Hum Reprod. 2005;20(10):2821–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Schieve LA, Ferre C, Peterson HB, Macaluso M, Reynolds MA, Wright VC. Perinatal outcome among singleton infants conceived through assisted reproductive technology in the United States. Obstet Gynecol. 2004;103(6):1144–53. doi: 10.1097/01.aog.0000127037.12652.76.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang YA, Sullivan EA, Black D, Dean J, Bryant J, Chapman M. Preterm birth and low birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil Steril. 2005;83(6):1650–8. doi: 10.1016/j.fertnstert.2004.12.033.CrossRefPubMedGoogle Scholar
  19. 19.
    Henningsen AK, Pinborg A, Lidegaard O, Vestergaard C, Forman JL, Andersen AN. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011;95(3):959–63. doi: 10.1016/j.fertnstert.2010.07.1075.CrossRefPubMedGoogle Scholar
  20. 20.
    Marino JL, Moore VM, Willson KJ, Rumbold A, Whitrow MJ, Giles LC, et al. Perinatal outcomes by mode of assisted conception and sub-fertility in an Australian data linkage cohort. PLoS One. 2014;9(1):e80398. doi: 10.1371/journal.pone.0080398.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503. doi: 10.1093/humupd/dms018.CrossRefPubMedGoogle Scholar
  22. 22.
    Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Soderstrom-Anttila V, et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2013;19(2):87–104. doi: 10.1093/humupd/dms044.CrossRefPubMedGoogle Scholar
  23. 23.
    ASRM. Recommendations for gamete and embryo donation: a committee opinion. Fertil Steril. 2013;99(1):47–62. doi: 10.1016/j.fertnstert.2012.09.037.CrossRefGoogle Scholar
  24. 24.
    Levron Y, Dviri M, Segol I, Yerushalmi GM, Hourvitz A, Orvieto R, et al. The ‘immunologic theory’ of preeclampsia revisited: a lesson from donor oocyte gestations. Am J Obstet Gynecol. 2014;(4):211, 383.e1-5. doi: 10.1016/j.ajog.2014.03.044.
  25. 25.
    Soderstrom-Anttila V. Pregnancy and child outcome after oocyte donation. Hum Reprod Update. 2001;7(1):28–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Wiggins DA, Main E. Outcomes of pregnancies achieved by donor egg in vitro fertilization—a comparison with standard in vitro fertilization pregnancies. Am J Obstet Gynecol. 2005;192(6):2002–2006; discussion 6-8. doi: 10.1016/j.ajog.2005.02.059.CrossRefPubMedGoogle Scholar
  27. 27.
    Malchau SS, Loft A, Larsen EC, Aaris Henningsen AK, Rasmussen S, Andersen AN, et al. Perinatal outcomes in 375 children born after oocyte donation: a Danish national cohort study. Fertil Steril. 2013;99(6):1637–43. doi: 10.1016/j.fertnstert.2013.01.128.CrossRefPubMedGoogle Scholar
  28. 28.
    Malchau SS, Loft A, Henningsen AK, Nyboe Andersen A, Pinborg A. Perinatal outcomes in 6,338 singletons born after intrauterine insemination in Denmark, 2007 to 2012: the influence of ovarian stimulation. Fertil Steril. 2014;102(4):1110–1116.e2. doi: 10.1016/j.fertnstert.2014.06.034.CrossRefPubMedGoogle Scholar
  29. 29.
    Gibbons WE, Cedars M, Ness RB. Toward understanding obstetrical outcome in advanced assisted reproduction: varying sperm, oocyte, and uterine source and diagnosis. Fertil Steril. 2011;95(5):1645–1649.e1. doi: 10.1016/j.fertnstert.2010.11.029.CrossRefPubMedGoogle Scholar
  30. 30.
    Vaughan DA, Cleary BJ, Murphy DJ. Delivery outcomes for nulliparous women at the extremes of maternal age–—a cohort study. BJOG Int J Obstet Gynaecol. 2014;121(3):261–8.CrossRefGoogle Scholar
  31. 31.
    Sunderam S, Kissin DM, Crawford SB, Folger SG, Jamieson DJ, Barfield WD. Assisted reproductive technology surveillance—United States, 2011. Morb Mort Weekly Rep Surveil Sum (Washington, DC : 2002). 2014;63(10):1–28.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Galit Levi Dunietz
    • 1
    • 2
    Email author
  • Claudia Holzman
    • 1
  • Yujia Zhang
    • 3
  • Chenxi Li
    • 1
  • David Todem
    • 1
  • Sheree L. Boulet
    • 3
  • Patricia McKane
    • 4
  • Dmitry M. Kissin
    • 3
  • Glenn Copeland
    • 5
  • Dana Bernson
    • 6
  • Michael P. Diamond
    • 7
  1. 1.Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingUSA
  2. 2.Department of NeurologyUniversity of MichiganAnn ArborUSA
  3. 3.Division of Reproductive HealthCenters for Disease Control and PreventionAtlantaUSA
  4. 4.Maternal and Child Health Epidemiology SectionMichigan Department of Health and Human ServicesLansingUSA
  5. 5.Michigan Department of Health and Human ServicesLansingUSA
  6. 6.Massachusetts Department of Public HealthBostonUSA
  7. 7.Department of Obstetrics and GynecologyAugusta UniversityAugustaUSA

Personalised recommendations