Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 2, pp 159–166 | Cite as

Embryo wastage rates remain high in assisted reproductive technology (ART): a look at the trends from 2004–2013 in the USA

  • Sanaz Ghazal
  • Pasquale PatrizioEmail author
Assisted Reproduction Technologies


This work examined the trend in “embryo wastage” rates after ART in USA and its relationship to the number of embryos transferred, live born infants delivered across patient age, and the yearly percentage of embryos wasted. The data were obtained from the US-clinics SART databank for the years 2004–2013. A total of 1,808,082 non-donor embryos were transferred in 748,394 fresh cycles resulting in 358,214 liveborn. During the years of analysis, the mean number of embryos transferred has progressively decreased leading to an overall significant decrease in Embryo Wastage rates (83.2 to 76.5%, p < 0.001) while the percentage of transfers leading to a live born increased (24.8 to 27.8%, p = 0.002). Embryo Wastage negatively correlated with percentage of transfers resulting in live birth (p = 0.001), and the average number of embryos transferred positively correlated with the percentage of embryos wasted (p < 0.001). The overwhelming majority of embryos transferred still do not result into a live birth confirming that only few embryos per ART cycle are competent. The overall “Embryo Wastage” rates have consistently decreased from a high of 90% in 1995 to a rate of 76.5% in 2013. Transferring fewer embryos particularly at the blastocyst-stage and improved methods of embryo selection may further decrease “Embryo Wastage” rates.


Assisted reproductive technology In vitro fertilization Embryo transfer Embryo Wastage Blastocysts Delivery rate 


  1. 1.
    Society for Assisted Reproductive Technologies. 2015.
  2. 2.
    Patrizio P, Bianchi V, Lalioti MD, Gerasimova T, Sakkas D. High rate of biological loss in assisted reproduction: it is in the seed, not in the soil. Reprod Biomed Online. 2007;14(1):92–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Patrizio P, Sakkas D. From oocyte to baby: a clinical evaluation of the biological efficiency of in vitro fertilization. Fertil Steril. 2009;91(4):1061–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Kovalevsky G, Patrizio P. High rates of embryo wastage with use of assisted reproductive technology: a look at the trends between 1995 and 2001 in the United States. Fertil Steril. 2005;84(2):325–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Scott Jr RT, Hofmann GE, Veeck LL, Jones Jr HW, Muasher SJ. Embryo quality and pregnancy rates in patients attempting pregnancy through in vitro fertilization. Fertil Steril. 1991;55(2):426–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Shulman A, Ben-Nun I, Ghetler Y, Kaneti H, Shilon M, Beyth Y. Relationship between embryo morphology and implantation rate after in vitro fertilization treatment in conception cycles. Fertil Steril. 1993;60(1):123–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Sandalinas M, Sadowy S, Alikani M, Calderon G, Cohen J, Munne S. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod. 2001;16:1954–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Armstrong S, Arroll N, Cree LM, Hordan V, Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev. 2015;2:CD011320.Google Scholar
  11. 11.
    Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet. 2015;32:1025–30.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kirkegaard K, Ahlstrom A, Ingerslev JH, Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103(2):323–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105(2):275–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Wu YG, Lazzaroni-Tealdi E, Wang Q, Zhang L, Barad DH, Kushnir VA, et al. Different effectiveness of closed embryo culture system with time-lapse imaging in comparison to standard manual embryology in good and poor prognosis patients: a prospectively randomized pilot study. Reprod Biol Endocrinol. 2016;14(1):49.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Scott Jr RT, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697–703.CrossRefPubMedGoogle Scholar
  16. 16.
    Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Forman EJ, Hong KH, Franasiak JM, Scott Jr RT. Obstetrical and neonatal outcomes from the BEST Trial: single embryo transfer with aneuploidy screening improves outcomes after in vitro fertilization without compromising delivery rates. Am J Obstet Gynecol. 2014;210(2):157.e1–6.CrossRefGoogle Scholar
  18. 18.
    Murugappan G, Ohno MS, Lathi RB. Cost-effectiveness analysis of preimplantation genetic screening and in vitro fertilization versus expectant management in patients with unexplained recurrent pregnancy loss. Fertil Steril. 2015;103(5):1215–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Mastenbroek S, Twisk M, van der Vein F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod. 2011;17(4):454–66.CrossRefGoogle Scholar
  20. 20.
    Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. BMJ. 2015;350:7611.CrossRefGoogle Scholar
  21. 21.
    Greco E, Minasi MG, Fiorentino F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N Engl J Med. 2015;373(21):2089–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Orvieto R, Shuly Y, Brengauz M, Feldman B. Should pre-implantation genetic screening be implemented to routine clinical practice? Gynecol Endocrinol. 2016;32(6):506–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Gleicher N, Vidali A, Braverman J, Kushnir VA, Barad DH, Hudson C, et al. Accuracy of preimplantation genetic screening (PGS) is compromised by degree of mosaicism of human embryos. Reprod Biol Endocrinol. 2016;14(1):54.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril. 2006;85(1):101–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Katz-Jaffe MG, McReynolds S, Gardner KD, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Krisher RL, Schoolcraft WB, Katz-Jaffe MG. Omics as a window to view embryo viability. Fertil Steril. 2015;103(2):333–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Fragouli E, Wells D, Iager AE, Kayisli UA, Patrizio P. Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Hum Reprod. 2012;27(8):2559–68.CrossRefPubMedGoogle Scholar
  28. 28.
    Practice Committee of the Society for Assisted Reproductive Technology and Practice Committee of the American Society for Reproductive Medicine. Elective single-embryo transfer. Fertil Steril. 2012;97:835–42.CrossRefGoogle Scholar
  29. 29.
    Practice Committee of the American Society for Reproductive Medicine and the Practice Committee of the Society for Assisted Reproductive Technology. Criteria for number of embryos to transfer: a committee opinion. Fertil Steril. 2013;99:44–6.CrossRefGoogle Scholar
  30. 30.
    Practice Committee of the American Society for Reproductive Medicine. Multiple gestations associated with infertility therapy: an American Society for Reproductive Medicine Practice Committee opinion. Fertil Steril. 2012;97:825–34.CrossRefGoogle Scholar
  31. 31.
    Ombelet W, de Sutter P, van der Elst J, Martens G. Multiple gestation and infertility treatment: registration, reflection and reaction—the Belgian project. Hum Reprod Update. 2005;11:3–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Johnston J, Gusmano MK, Patrizio P. Multiple births following fertility treatments: causes, consequences and opportunities for changes. Fertil Steril. 2014;102(1):36–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328(7434):261.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Harton GL, Munne S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. PGD Practitioners Group. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703.CrossRefPubMedGoogle Scholar
  35. 35.
    Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;7:CD002118.Google Scholar
  36. 36.
    Glujovsky D, Farquhar C, Quinteiro Retamar AM, Alvarez Sedo CR, Blake D. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev 2016; (6):CD002118Google Scholar
  37. 37.
    Baart EB, Martini E, Eijkemans MJ, Van Opstal D, Beckers NG, Verhoeff A, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod. 2007;22(4):980–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Verberg MF, Eijkemans MJ, Macklon NS, Heijnen EM, Baart EB, Hohmann FP. The clinical significance of the retrieval of a low number of oocytes following mild ovarian stimulation for IVF: a meta-analysis. Hum Reprod Update. 2009;15(1):5–12.CrossRefPubMedGoogle Scholar
  39. 39.
    Verberg MF, Macklon NS, Nargund G, Frydman R, Devroey P, Broekmans FJ, et al. Mild ovarian stimulation for IVF. Hum Reprod Update. 2009;15(1):13–29.CrossRefPubMedGoogle Scholar
  40. 40.
    Polinder S, Heijnen EM, Macklon NS, Habbema JD, Fauser BJ, Eijkemans MJ. Cost-effectiveness of a mild compared with a standard strategy for IVF: a randomized comparison using cumulative term live birth as the primary endpoint. Hum Reprod. 2008;23(2):316–23.CrossRefPubMedGoogle Scholar
  41. 41.
    Fauser BC, Devroey P, Yen SS, Gosden R, Crowley Jr WF, Baird DT, et al. Minimal ovarian stimulation for IVF: appraisal of potential benefits and drawbacks. Hum Reprod. 1999;14(11):2681–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Rubio C, Mercader A, Alama P, Lizan C, Rodrigo L, Labarta E, et al. Prospective cohort study in high responder oocyte donors using two hormonal stimulation protocols: impact on embryo aneuploidy and development. Hum Reprod. 2010;25(9):2290–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Pereira N, Rosenwaks Z. A fresh(er) perspective on frozen embryo transfer. Fertil Steril. 2016;106(2):257–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Adler A, Lee HL, McCulloh DH, Ampeloquio E, Clarke-Williams M, Wertz BH, et al. Blastocyst culture selects for euploid embryos: comparison of blastomere and trophectoderm biopsies. Reprod Biomed Online. 2014;28(4):485–91.CrossRefPubMedGoogle Scholar
  45. 45.
    Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21(6):727–47.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Yale Fertility Center, Department Obstetric, Gynecology and Reproductive SciencesYale School of MedicineNew HavenUSA

Personalised recommendations