Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 2, pp 275–281 | Cite as

Clinical and genetic analysis of a family with Kartagener syndrome caused by novel DNAH5 mutations

  • Xuan Xu
  • Ping GongEmail author
  • Jie Wen



Kartagener syndrome (KS), also known as visceral inversion-nasosinusitis-bronchiectasis syndrome, or familial bronchiectasis, is an autosomal recessive inherited disease. In this study, through two cases of KS, we aimed to assess the clinical and genetic characteristics of KS caused by DNAH5 mutations.


The two cases of KS from the same family underwent extensive clinical assessments, with next-generation DNA sequencing and bioinformatics analysis to identify pathogenic genes. In addition, Sanger sequencing was used to verify the pedigrees.


The present study employed a directional capture strategy for hereditary disease screening, which correctly identified the virulence sites in the pedigree, and facilitated the differential diagnosis among multiple genes. Two novel mutations were detected in DNAH5: c.7778C>T (missense mutation) and c.13729G>A (nonsense mutation). They were not found in dbSNP, 1000 Genomes, and ExAC.


These findings demonstrated that new DNAH5 mutations could be used for molecular diagnosis of KS, providing families with genetic counseling and prenatal diagnosis.


Kartagener syndrome DNAH5 Gene sequencing Visceral inversion Mutation Precision medicine 


Compliance with ethical standards

Research involving human participants

The present study was approved by the Ethics Committee of People’s Hospital. All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 2006;43(4):326–33. doi: 10.1136/jmg.2005.034868.CrossRefPubMedGoogle Scholar
  2. 2.
    Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, et al. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2013;92(1):99–106. doi: 10.1016/j.ajhg.2012.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Afzelius B, Mossberg B, Bergstrom S. Immotile-cilia syndrome (primary ciliary dyskinesia), including Kartagener syndrome. Metabol Molecul Base Inherit Dis. 1995;3:3943–54.Google Scholar
  4. 4.
    Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation. 2007;115(22):2814–21. doi: 10.1161/CIRCULATIONAHA.106.649038.CrossRefPubMedGoogle Scholar
  5. 5.
    Hogg C, Bush A. Genotyping in primary ciliary dyskinesia: ready for prime time, or a fringe benefit? Thorax. 2012;67(5):377–8. doi: 10.1136/thoraxjnl-2011-201320.CrossRefPubMedGoogle Scholar
  6. 6.
    O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43(6):585–9. doi: 10.1038/ng.835.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Geremek M, Schoenmaker F, Zietkiewicz E, Pogorzelski A, Diehl S, Wijmenga C, et al. Sequence analysis of 21 genes located in the Kartagener syndrome linkage region on chromosome 15q. Euro J Hum Genet: EJHG. 2008;16(6):688–95. doi: 10.1038/ejhg.2008.5.CrossRefGoogle Scholar
  8. 8.
    Djakow J, Svobodova T, Hrach K, Uhlik J, Cinek O, Pohunek P. Effectiveness of sequencing selected exons of DNAH5 and DNAI1 in diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol. 2012;47(9):864–75. doi: 10.1002/ppul.22520.CrossRefPubMedGoogle Scholar
  9. 9.
    Failly M, Bartoloni L, Letourneau A, Munoz A, Falconnet E, Rossier C, et al. Mutations in DNAH5 account for only 15% of a non-preselected cohort of patients with primary ciliary dyskinesia. J Med Genet. 2009;46(4):281–6. doi: 10.1136/jmg.2008.061176.CrossRefPubMedGoogle Scholar
  10. 10.
    Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med. 2005;171(12):1343–9. doi: 10.1164/rccm.200411-1583OC.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jorissen M, Willems T, Van der Schueren B, Verbeken E, De Boeck K. Ultrastructural expression of primary ciliary dyskinesia after ciliogenesis in culture. Acta Otorhinolaryngol Belg. 2000;54(3):343–56.PubMedGoogle Scholar
  12. 12.
    Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Geremek M, Witt M. Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions. J Appl Genet. 2004;45(3):347–61.PubMedGoogle Scholar
  14. 14.
    Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004;169(4):459–67. doi: 10.1164/rccm.200303-365OC.CrossRefPubMedGoogle Scholar
  15. 15.
    Halbert SA, Patton DL, Zarutskie PW, Soules MR. Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum Reprod. 1997;12(1):55–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Fischer TJ, McAdams JA, Entis GN, Cotton R, Ghory JE, Ausdenmoore RW. Middle ear ciliary defect in Kartagener’s syndrome. Pediatrics. 1978;62(4):443–5.PubMedGoogle Scholar
  17. 17.
    Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet. 2001;68(4):1030–5. doi: 10.1086/319511.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eliasson R, Mossberg B, Camner P, Afzelius BA. The immotile-cilia syndrome. A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N Engl J Med. 1977;297(1):1–6. doi: 10.1056/NEJM197707072970101.CrossRefPubMedGoogle Scholar
  19. 19.
    Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med. 2006;174(2):120–6. doi: 10.1164/rccm.200601-084OC.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Afzelius BA, Eliasson R. Male and female infertility problems in the immotile-cilia syndrome. Eur J Respir Dis Suppl. 1983;127:144–7.PubMedGoogle Scholar
  21. 21.
    Munro NC, Currie DC, Lindsay KS, Ryder TA, Rutman A, Dewar A, et al. Fertility in men with primary ciliary dyskinesia presenting with respiratory infection. Thorax. 1994;49(7):684–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Children’s Medical Center, People’s HospitalChangshaChina
  2. 2.Pediatric orthopedics, People’s HospitalChangshaChina

Personalised recommendations