Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 2, pp 225–238 | Cite as

Proteomic profile of maternal-aged blastocoel fluid suggests a novel role for ubiquitin system in blastocyst quality

  • Gabriella Tedeschi
  • Elena Albani
  • Elena Monica BorroniEmail author
  • Valentina Parini
  • Anna Maria Brucculeri
  • Elisa Maffioli
  • Armando Negri
  • Simona Nonnis
  • Mauro Maccarrone
  • Paolo Emanuele Levi-Setti
Embryo Biology

Abstract

Purpose

The etiology of maternal aging, a common cause of female factor infertility and a rate-limiting step in vitro fertilization (IVF) success, remains still unclear. Proteomic changes responsible for the impaired successful pregnancy outcome after IVF with aged blastocysts have not been yet evaluated. The objective of this prospective study was to employ proteomic techniques and bioinformatic tools to enlight differences at the protein level in blastocoel fluid of aged and younger woman.

Methods

Protein composition of human blastocoel fluid isolated by micromanipulation from 46 blastocysts of women aged <37 years (group A) and 29 of women aged ≥37 years (group B) have been identified by a shotgun proteomic approach based on high-resolution nano-liquid chromatography electrospray-ionization-tandem mass spectrometry (nLC-ESI-MS/MS) using label free for the relative quantification of their expression levels.

Results

The proteomic analysis leads to the identification and quantification of 148 proteins; 132 and 116 proteins were identified in groups A and B, respectively. Interestingly, the identified proteins are mainly involved in processes aimed at fine tuning embryo implantation and development. Among the 100 proteins commonly expressed in both groups, 17 proteins are upregulated and 44 downregulated in group B compared to group A. Overall, the analysis identified 33 proteins, which were increased or present only in B while 76 were decreased in B or present only in A.

Conclusions

Data revealed that maternal aging mainly affects blastocyst survival and implantation through unbalancing the equilibrium of the ubiquitin system known to play a crucial role in fine-tuning several aspects required to ensure successful pregnancy outcome.

Keywords

Blastocoel fluid Aging Embryo implantation Proteomics Shotgun 

Notes

Acknowledgements

We thank Dr. Francesca Grassi Scalvini and Dr. Fabiana Santagata for their skillful technical assistance.

Authors’ roles

G.T., E.A., V.P., A.B., and P.E.L.S. designed the research. G.T., E.A., V.P., A.B., E.M., A.N., and S.N. performed the research. G.T., E.A., V.P., A.B., E.M.B., E.M., A.N., S.N., and M.M. analyzed the data. G.T., E.A., V.P., A.B., E.M.B., and M.M. wrote the paper.

Compliance with ethical standards

Funding

None declared.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10815_2016_842_MOESM1_ESM.pdf (94 kb)
ESM 1 (PDF 94 kb)
10815_2016_842_MOESM2_ESM.pdf (190 kb)
ESM 2 (PDF 190 kb)
10815_2016_842_MOESM3_ESM.pdf (102 kb)
ESM 3 (PDF 102 kb)
10815_2016_842_MOESM4_ESM.pdf (372 kb)
ESM 4 (PDF 371 kb)

References

  1. 1.
    Paiva P, Salamonsen LA, Manuelpillai U, Dimitriadis E. Interleukin 11 inhibits human trophoblast invasion indicating a likely role in the decidual restraint of trophoblast invasion during placentation. Biol Reprod. 2009;80(2):302–10. doi: 10.1095/biolreprod.108.071415.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Koot YE, Teklenburg G, Salker MS, Brosens JJ, Macklon NS. Molecular aspects of implantation failure. Biochim Biophys Acta. 2012;1822(12):1943–50. doi: 10.1016/j.bbadis.2012.05.017.CrossRefPubMedGoogle Scholar
  3. 3.
    Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update. 2005;11(6):613–30. doi: 10.1093/humupd/dmi023.CrossRefPubMedGoogle Scholar
  4. 4.
    Humm KC, Dodge LE, Wu LH, Penzias AS, Malizia BA, Sakkas D, et al. In vitro fertilization in women under 35: counseling should differ by age. J Assist Reprod Genet. 2015. doi: 10.1007/s10815-015-0570-7.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after in vitro fertilization. N Engl J Med. 2009;360(3):236–43. doi: 10.1056/NEJMoa0803072.CrossRefPubMedGoogle Scholar
  6. 6.
    Luke B, Brown MB, Wantman E, Lederman A, Gibbons W, Schattman GL, et al. Cumulative birth rates with linked assisted reproductive technology cycles. N Engl J Med. 2012;366(26):2483–91. doi: 10.1056/NEJMoa1110238.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Aplin JD. Embryo implantation: the molecular mechanism remains elusive. Reprod Biomed Online. 2006;13(6):833–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Garrido-Gomez T, Dominguez F, Simon C. Proteomics of embryonic implantation. Handb Exp Pharmacol. 2010;198:67–78. doi: 10.1007/978-3-642-02062-9_5.CrossRefGoogle Scholar
  9. 9.
    Aydiner F, Yetkin CE, Seli E. Perspectives on emerging biomarkers for non-invasive assessment of embryo viability in assisted reproduction. Curr Mol Med. 2010;10(2):206–15.CrossRefPubMedGoogle Scholar
  10. 10.
    Bromer JG, Seli E. Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Curr Opin Obstetr Gynecol. 2008;20(3):234–41. doi: 10.1097/GCO.0b013e3282fe723d.CrossRefGoogle Scholar
  11. 11.
    Latham KE, Garrels JI, Chang C, Solter D. Analysis of embryonic mouse development: construction of a high-resolution, two-dimensional gel protein database. Appl Theoret Electrophoresis : Off J Int Electrophoresis Soc. 1992;2(6):163–70.Google Scholar
  12. 12.
    Shi CZ, Collins HW, Garside WT, Buettger CW, Matschinsky FM, Heyner S. Protein databases for compacted eight-cell and blastocyst-stage mouse embryos. Mol Reprod Dev. 1994;37(1):34–47. doi: 10.1002/mrd.1080370106.CrossRefPubMedGoogle Scholar
  13. 13.
    Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130(6):899–905. doi: 10.1530/rep.1.00854.CrossRefPubMedGoogle Scholar
  14. 14.
    Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril. 2006;85(1):101–7. doi: 10.1016/j.fertnstert.2005.09.011.CrossRefPubMedGoogle Scholar
  15. 15.
    Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86(3):678–85. doi: 10.1016/j.fertnstert.2006.05.022.CrossRefPubMedGoogle Scholar
  16. 16.
    Poli M, Ori A, Child T, Jaroudi S, Spath K, Beck M et al. Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Molec Med. 2015; 7(11): 1465–79. doi: 10.15252/emmm.201505344.Google Scholar
  17. 17.
    Jensen PL, Beck HC, Petersen J, Hreinsson J, Wanggren K, Laursen SB, et al. Proteomic analysis of human blastocoel fluid and blastocyst cells. Stem Cells Dev. 2013;22(7):1126–35. doi: 10.1089/scd.2012.0239.CrossRefPubMedGoogle Scholar
  18. 18.
    Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7. doi: 10.1093/molehr/gap012.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gardner RL, Beddington RS. Multi-lineage ‘stem’ cells in the mammalian embryo. J Cell Sci Suppl. 1988;10:11–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Chambery A, Colucci-D’Amato L, Vissers JP, Scarpella S, Langridge JI, Parente A. Proteomic profiling of proliferating and differentiated neural mes-c-myc A1 cell line from mouse embryonic mesencephalon by LC-MS. J Proteome Res. 2009;8(1):227–38. doi: 10.1021/pr800454n.CrossRefPubMedGoogle Scholar
  21. 21.
    Levin Y, Wang L, Ingudomnukul E, Schwarz E, Baron-Cohen S, Palotas A, et al. Real-time evaluation of experimental variation in large-scale LC-MS/MS-based quantitative proteomics of complex samples. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(13):1299–305. doi: 10.1016/j.jchromb.2008.11.007.CrossRefGoogle Scholar
  22. 22.
    Levi-Setti PE, Menduni F, Smeraldi A, Patrizio P, Morenghi E, Albani E. Artificial shrinkage of blastocysts prior to vitrification improves pregnancy outcome: analysis of 1028 consecutive warming cycles. J Assist Reprod Genet. 2016;33(4):461–6. doi: 10.1007/s10815-016-0655-y.CrossRefPubMedGoogle Scholar
  23. 23.
    Vernocchi V, Morselli MG, Varesi S, Nonnis S, Maffioli E, Negri A, et al. Sperm ubiquitination in epididymal feline semen. Theriogenology. 2014;82(4):636–42. doi: 10.1016/j.theriogenology.2014.06.002.CrossRefPubMedGoogle Scholar
  24. 24.
    Maffioli EAF, Nonnis S, Santagata F, Negri A, DeLano FA, Santamaria MH, Kistler EB, Schmid-Schönbein GW, Tedeschi G. Analysis of rat plasma peptidome in hemorrhagic shock. Shock. 2015; 44 (Suppl 2:6).Google Scholar
  25. 25.
    Tamplenizza M, Lenardi C, Maffioli E, Nonnis S, Negri A, Forti S, et al. Nitric oxide synthase mediates PC12 differentiation induced by the surface topography of nanostructured TiO2. J Nanobiotechnol. 2013;11:35. doi: 10.1186/1477-3155-11-35.CrossRefGoogle Scholar
  26. 26.
    Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. doi: 10.1038/nbt.1511.CrossRefPubMedGoogle Scholar
  27. 27.
    da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi: 10.1038/nprot.2008.211.CrossRefGoogle Scholar
  28. 28.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52. doi: 10.1093/nar/gku1003.CrossRefPubMedGoogle Scholar
  29. 29.
    Fraser KB, Moehle MS, Daher JP, Webber PJ, Williams JY, Stewart CA, et al. LRRK2 secretion in exosomes is regulated by 14-3-3. Hum Mol Genet. 2013;22(24):4988–5000. doi: 10.1093/hmg/ddt346.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vassena R, Boue S, Gonzalez-Roca E, Aran B, Auer H, Veiga A, et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138(17):3699–709. doi: 10.1242/dev.064741.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bebington C, Doherty FJ, Fleming SD. The possible biological and reproductive functions of ubiquitin. Hum Reprod Update. 2001;7(1):102–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Bebington C, Bell SC, Doherty FJ, Fazleabas AT, Fleming SD. Localization of ubiquitin and ubiquitin cross-reactive protein in human and baboon endometrium and decidua during the menstrual cycle and early pregnancy. Biol Reprod. 1999;60(4):920–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Bebington C, Doherty FJ, Fleming SD. Ubiquitin cross-reactive protein gene expression is increased in decidualized endometrial stromal cells at the initiation of pregnancy. Mol Hum Reprod. 1999;5(10):966–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Bebington C, Doherty FJ, Ndukwe G, Fleming SD. The progesterone receptor and ubiquitin are differentially regulated within the endometrial glands of the natural and stimulated cycle. Mol Hum Reprod. 2000;6(3):264–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Grzmil P, Altmann ME, Adham IM, Engel U, Jarry H, Schweyer S, et al. Embryo implantation failure and other reproductive defects in Ube2q1-deficient female mice. Reproduction. 2013;145(1):45–56. doi: 10.1530/REP-12-0054.CrossRefPubMedGoogle Scholar
  36. 36.
    Sutovsky P, Motlik J, Neuber E, Pavlok A, Schatten G, Palecek J, et al. Accumulation of the proteolytic marker peptide ubiquitin in the trophoblast of mammalian blastocysts. Cloning Stem Cells. 2001;3(3):157–61. doi: 10.1089/153623001753205115.CrossRefPubMedGoogle Scholar
  37. 37.
    Voncken JW, Roelen BA, Roefs M, de Vries S, Verhoeven E, Marino S, et al. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci U S A. 2003;100(5):2468–73. doi: 10.1073/pnas.0434312100.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Leeb M, Wutz A. Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J Cell Biol. 2007;178(2):219–29. doi: 10.1083/jcb.200612127.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fenner BJ, Scannell M, Prehn JH. Identification of polyubiquitin binding proteins involved in NF-kappaB signaling using protein arrays. Biochim Biophys Acta. 2009;1794(7):1010–6. doi: 10.1016/j.bbapap.2009.02.013.CrossRefPubMedGoogle Scholar
  40. 40.
    Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell. 2005;9(6):769–79. doi: 10.1016/j.devcel.2005.10.007.CrossRefPubMedGoogle Scholar
  41. 41.
    Reverter D, Lima CD. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature. 2005;435(7042):687–92. doi: 10.1038/nature03588.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell. 2004;7(5):663–76. doi: 10.1016/j.devcel.2004.10.005.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431(7010):873–8. doi: 10.1038/nature02985.CrossRefPubMedGoogle Scholar
  44. 44.
    Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet. 2012;8(7):e1002774. doi: 10.1371/journal.pgen.1002774.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kalb R, Latwiel S, Baymaz HI, Jansen PW, Muller CW, Vermeulen M, et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol. 2014;21(6):569–71. doi: 10.1038/nsmb.2833.CrossRefPubMedGoogle Scholar
  46. 46.
    Luo M, Zhou J, Leu NA, Abreu CM, Wang J, Anguera MC, et al. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLoS Genet. 2015;11(1):e1004954. doi: 10.1371/journal.pgen.1004954.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Qin J, Whyte WA, Anderssen E, Apostolou E, Chen HH, Akbarian S, et al. The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. Cell Stem Cell. 2012;11(3):319–32. doi: 10.1016/j.stem.2012.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53. doi: 10.1038/nature04733.CrossRefPubMedGoogle Scholar
  49. 49.
    Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature. 2010;464(7286):306–10. doi: 10.1038/nature08788.CrossRefPubMedGoogle Scholar
  50. 50.
    O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21(13):4330–6. doi: 10.1128/MCB.21.13.4330-4336.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kerppola TK. Polycomb group complexes—many combinations, many functions. Trends Cell Biol. 2009;19(12):692–704. doi: 10.1016/j.tcb.2009.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10(10):697–708. doi: 10.1038/nrm2763.CrossRefPubMedGoogle Scholar
  53. 53.
    Gong Y, Yue J, Wu X, Wang X, Wen J, Lu L, et al. NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RARE element. Nucleic Acids Res. 2006;34(21):6158–69. doi: 10.1093/nar/gkl834.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cortezzi SS, Garcia JS, Ferreira CR, Braga DP, Figueira RC, Iaconelli Jr A, et al. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. Anal Bioanal Chem. 2011;401(4):1331–9. doi: 10.1007/s00216-011-5202-1.CrossRefPubMedGoogle Scholar
  55. 55.
    Nashun B, Yukawa M, Liu H, Akiyama T, Aoki F. Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development. 2010;137(22):3785–94. doi: 10.1242/dev.051805.CrossRefPubMedGoogle Scholar
  56. 56.
    Wu BJ, Dong FL, Ma XS, Wang XG, Lin F, Liu HL. Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development. Genet Molec Res : GMR. 2014;13(3):5929–39. doi: 10.4238/2014.August.7.8.CrossRefGoogle Scholar
  57. 57.
    Singh RK, Liang D, Gajjalaiahvari UR, Kabbaj MH, Paik J, Gunjan A. Excess histone levels mediate cytotoxicity via multiple mechanisms. Cell Cycle. 2010;9(20):4236–44.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Liu Y, Tseng M, Perdreau SA, Rossi F, Antonescu C, Besmer P, et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res. 2007;67(6):2685–92. doi: 10.1158/0008-5472.CAN-06-3497.CrossRefPubMedGoogle Scholar
  59. 59.
    Liu Y, Parry JA, Chin A, Duensing S, Duensing A. Soluble histone H2AX is induced by DNA replication stress and sensitizes cells to undergo apoptosis. Mol Cancer. 2008;7:61. doi: 10.1186/1476-4598-7-61.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Singh RK, Kabbaj MH, Paik J, Gunjan A. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol. 2009;11(8):925–33. doi: 10.1038/ncb1903.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Singh RK, Paik J, Gunjan A. Generation and management of excess histones during the cell cycle. Front Biosci (Landmark Ed). 2009;14:3145–58.CrossRefGoogle Scholar
  62. 62.
    Cook AJ, Gurard-Levin ZA, Vassias I, Almouzni G. A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. Mol Cell. 2011;44(6):918–27. doi: 10.1016/j.molcel.2011.11.021.CrossRefPubMedGoogle Scholar
  63. 63.
    Li Y, Lu J, Prochownik EV. Dual role for SUMO E2 conjugase Ubc9 in modulating the transforming and growth-promoting properties of the HMGA1b architectural transcription factor. J Biol Chem. 2007;282(18):13363–71. doi: 10.1074/jbc.M610919200.CrossRefPubMedGoogle Scholar
  64. 64.
    Benbrook DM, Long A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol. 2012;34(3):286–97.PubMedGoogle Scholar
  65. 65.
    Murray P, Edgar D. Regulation of programmed cell death by basement membranes in embryonic development. J Cell Biol. 2000;150(5):1215–21.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Carmignac V, Svensson M, Korner Z, Elowsson L, Matsumura C, Gawlik KI, et al. Autophagy is increased in laminin alpha2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum Mol Genet. 2011;20(24):4891–902. doi: 10.1093/hmg/ddr427.CrossRefPubMedGoogle Scholar
  67. 67.
    Taylor AH, Amoako AA, Bambang K, Karasu T, Gebeh A, Lam PM, et al. Endocannabinoids and pregnancy. Clin Chimica Acta; Int J Clin Chem. 2010;411(13-14):921–30. doi: 10.1016/j.cca.2010.03.012.CrossRefGoogle Scholar
  68. 68.
    Maccarrone M. Endocannabinoids: friends and foes of reproduction. Prog Lipid Res. 2009;48(6):344–54. doi: 10.1016/j.plipres.2009.07.001.CrossRefPubMedGoogle Scholar
  69. 69.
    Battista N, Bari M, Maccarrone M. Endocannabinoids and reproductive events in health and disease. Handb Exp Pharmacol. 2015;231:341–65. doi: 10.1007/978-3-319-20825-1_12.CrossRefPubMedGoogle Scholar
  70. 70.
    McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem. 2005;74:411–32. doi: 10.1146/annurev.biochem.74.082803.133450.CrossRefPubMedGoogle Scholar
  71. 71.
    Rapino C, Battista N, Bari M, Maccarrone M. Endocannabinoids as biomarkers of human reproduction. Hum Reprod Update. 2014;20(4):501–16. doi: 10.1093/humupd/dmu004.CrossRefPubMedGoogle Scholar
  72. 72.
    Maccarrone M, Bisogno T, Valensise H, Lazzarin N, Fezza F, Manna C, et al. Low fatty acid amide hydrolase and high anandamide levels are associated with failure to achieve an ongoing pregnancy after IVF and embryo transfer. Mol Hum Reprod. 2002;8(2):188–95.CrossRefPubMedGoogle Scholar
  73. 73.
    Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agro A. Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscarriage. Lancet. 2000;355(9212):1326–9. doi: 10.1016/S0140-6736(00)02115-2.CrossRefPubMedGoogle Scholar
  74. 74.
    Habayeb OM, Taylor AH, Finney M, Evans MD, Konje JC. Plasma anandamide concentration and pregnancy outcome in women with threatened miscarriage. Jama. 2008;299(10):1135–6. doi: 10.1001/jama.299.10.1135.CrossRefPubMedGoogle Scholar
  75. 75.
    Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem. 2006;281(48):36569–78. doi: 10.1074/jbc.M606646200.CrossRefPubMedGoogle Scholar
  76. 76.
    Jiang JY, Xiong H, Cao M, Xia X, Sirard MA, Tsang BK. Mural granulosa cell gene expression associated with oocyte developmental competence. J Ovarian Res. 2010;3:6. doi: 10.1186/1757-2215-3-6.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Esposito G, Schiattarella GG, Perrino C, Cattaneo F, Pironti G, Franzone A, et al. Dermcidin: a skeletal muscle myokine modulating cardiomyocyte survival and infarct size after coronary artery ligation. Cardiovasc Res. 2015;107(4):431–41. doi: 10.1093/cvr/cvv173.CrossRefPubMedGoogle Scholar
  78. 78.
    Huang B, Porter G. Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta Pharmacol Sin. 2005;26(10):1253–8. doi: 10.1111/j.1745-7254.2005.00184.x.CrossRefPubMedGoogle Scholar
  79. 79.
    O’Neill C, Li Y, Jin XL. Survival signaling in the preimplantation embryo. Theriogenology. 2012;77(4):773–84. doi: 10.1016/j.theriogenology.2011.12.016.CrossRefPubMedGoogle Scholar
  80. 80.
    Abbas W, Kumar A, Herbein G. The eEF1A proteins: at the crossroads of oncogenesis, apoptosis, and viral infections. Front Oncol. 2015;5:75. doi: 10.3389/fonc.2015.00075.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Migliaccio N, Ruggiero I, Martucci NM, Sanges C, Arbucci S, Tate R, et al. New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie. 2015. doi: 10.1016/j.biochi.2015.07.021.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gabriella Tedeschi
    • 1
    • 2
  • Elena Albani
    • 3
  • Elena Monica Borroni
    • 4
    Email author
  • Valentina Parini
    • 3
  • Anna Maria Brucculeri
    • 3
  • Elisa Maffioli
    • 2
  • Armando Negri
    • 1
  • Simona Nonnis
    • 1
  • Mauro Maccarrone
    • 5
  • Paolo Emanuele Levi-Setti
    • 3
  1. 1.Dipartimento di Medicina VeterinariaUniversità degli Studi di MilanoMilanItaly
  2. 2.Fondazione FilareteMilanItaly
  3. 3.Humanitas Fertility Center, Department of Gynecology, Division of Gynecology and Reproductive MedicineHumanitas Research HospitalMilanItaly
  4. 4.Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoMilanItaly
  5. 5.Department of MedicineCampus Bio-Medico University of RomeRomeItaly

Personalised recommendations