Skip to main content
Log in

Associations between follicular fluid high density lipoprotein particle components and embryo quality among in vitro fertilization patients

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Follicular redox balance is likely to be important for embryo quality during in vitro fertilization (IVF), and the anti-oxidative high desity lipoprotein (HDL) particle is the sole lipoprotein measured in follicular fluid (FF). Therefore, we investigated FF HDL particle components as predictors of embryo quality during IVF.

Methods

Two research follicles collected from each participant were individually tracked, and 103 women having at least one developed embryo were included in the analysis. Concentrations of 15 non-cholesterol HDL particle components and 26 HDL-cholesterol (HDL-C) particle size subfractions were determined. Embryo quality was assessed for embryo cell number, embryo fragmentation, and embryo symmetry. Multivariable Poisson regression with a sandwich variance estimator was used to evaluate associations between HDL particle components and embryo quality, adjusted for covariates.

Results

Higher γ-tocopherol concentration was associated with less embryo fragmentation (relative risk [RR] = 4.43; 95 % confidence interval [CI] 1.78, 11.06), and higher apolipoprotein A-1 concentration was associated with full embryo symmetry (RR = 3.92; 95 % CI 1.56, 9.90). Higher concentrations of HDL-C subfractions in the large and medium particle size ranges were associated with poorer embryo quality.

Conclusions

FF HDL lipophilic micronutrients and protein components, as well as HDL-C particle size, may be important predictors of embryo quality during IVF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Azhar S, Nomoto A, Leers-Sucheta S, Reaven E. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res. 1998;39(8):1616–28.

    CAS  PubMed  Google Scholar 

  2. Li XL, Peegel H, Menon KMJ. Regulation of high density lipoprotein receptor messenger ribonucleic acid expression and cholesterol transport in theca-interstitial cells by insulin and human chorionic gonadotropin. Endocrinology. 2001;142(1):174–81.

    CAS  Google Scholar 

  3. Jaspard B, Collet X, Barbaras R, Manent J, Vieu C, Parinaud J, et al. Biochemical characterization of pre-beta 1 high-density lipoprotein from human ovarian follicular fluid: evidence for the presence of a lipid core. Biochemistry. 1996;35(5):1352–57.

    Article  CAS  PubMed  Google Scholar 

  4. Le Goff D. Follicular fluid lipoproteins in the mare: evaluation of HDL transfer from plasma to follicular fluid. Biochim Biophys Acta. 1994;1210(2):226–32.

    Article  CAS  PubMed  Google Scholar 

  5. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108(22):2751–56.

    Article  CAS  PubMed  Google Scholar 

  6. Oktem O, Urman B. Understanding follicle growth in vivo. Hum Reprod. 2010;25(12):2944–54.

    Article  PubMed  Google Scholar 

  7. Fujimoto VY, Kane JP, Ishida BY, Bloom MS, Browne RW. High-density lipoprotein metabolism and the human embryo. Hum Reprod Update. 2010;16(1):20–38.

    Article  CAS  PubMed  Google Scholar 

  8. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58(3):342–74.

    Article  CAS  PubMed  Google Scholar 

  9. Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004;45(6):993–1007.

    Article  CAS  PubMed  Google Scholar 

  10. Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006;98(11):1352–64.

    Article  CAS  PubMed  Google Scholar 

  11. Besler C, Luscher TF, Landmesser U. Molecular mechanisms of vascular effects of high-density lipoprotein: alterations in cardiovascular disease. EMBO Mol Med. 2012;4(4):251–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McPherson PAC, Young IS, McKibben B, McEneny J. High density lipoprotein subfractions: isolation, composition, and their duplicitous role in oxidation. J Lipid Res. 2007;48(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  13. Von Eckardstein A, Hersberger M, Rohrer L. Current understanding of the metabolism and biological actions of HDL. Curr Opin Clin Nutr Metab Care. 2005;8(2):147–52.

    Article  Google Scholar 

  14. Negre-Salvayre A, Dousset N, Ferretti G, Bacchetti T, Curatola G, Salvayre R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic Biol Med. 2006;41(7):1031–40.

    Article  CAS  PubMed  Google Scholar 

  15. Goulinet S, Chapman MJ. Plasma LDL and HDL subspecies are heterogenous in particle content of tocopherols and oxygenated and hydrocarbon carotenoids: Relevance to oxidative resistance and atherogenesis. Arterioscler Thromb Vas Biol. 1997;17(4):786–96.

    Article  CAS  Google Scholar 

  16. Nobécourt E, Jacqueminet S, Hansel B, Chantepie S, Grimaldi A, Chapman MJ, et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia. 2005;48(3):529–38.

    Article  PubMed  Google Scholar 

  17. Duong PT, Weibel GL, Lund-Katz S, Rothblat GH, Phillips MC. Characterization and properties of pre beta-HDL particles formed by ABCA1-mediated cellular lipid efflux to apoA-I. J Lipid Res. 2008;49(5):1006–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lund-Katz S, Phillips MC. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem. 2010;51:183–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Lenten BJ, Reddy ST, Navab M, Fogelman AM. Understanding changes in high density lipoproteins during the acute phase response. Arterioscler Thromb Vas Biol. 2006;26(8):1687–88.

    Article  Google Scholar 

  20. Gaidukov L, Tawfik DS. High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry. 2005;44(35):11843–54.

    Article  CAS  PubMed  Google Scholar 

  21. Browne RW, Shelly WB, Bloom MS, Ocque AJ, Sandler JR, Huddleston HG, et al. Distributions of high-density lipoprotein particle components in human follicular fluid and sera and their associations with embryo morphology parameters during IVF. Hum Reprod. 2008;23(8):1884–94.

    Article  CAS  PubMed  Google Scholar 

  22. Browne RW, Bloom MS, Shelly WB, Ocque AJ, Huddleston HG, Fujimoto VY. Follicular fluid high density lipoprotein-associated micronutrient levels are associated with embryo fragmentation during IVF. J Assist Reprod Genet. 2009;26(11–12):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bloom MS, Kim K, Fujimoto VY, Browne RW. Variability in the components of high-density lipoprotein particles measured in human ovarian follicular fluid: a cross-sectional analysis. Fertil Steril. 2014;101(5):1431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levay PF, Huyser C, Fourie FLR, Rossouw DJ. The detection of blood contamination in human follicular fluid. J Assist Reprod Genet. 1997;14(4):212–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewin A, Schenker JG, Safran A, Zigelman N, Avrech O, Abramov Y, et al. Embryo growth rate in vitro as an indicator of embryo quality in IVF cycles. J Assist Reprod Genet. 1994;11(10):500–03.

    Article  CAS  PubMed  Google Scholar 

  26. Alikani M, Cohen J, Tomkin G, Garrisi GJ, Mack C, Scott RT. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril. 1999;71(5):836–42.

    Article  CAS  PubMed  Google Scholar 

  27. Holte J, Berglund L, Milton K, Garello C, Gennarelli G, Revelli A, et al. Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. Hum Reprod. 2007;22(2):548–57.

    Article  CAS  PubMed  Google Scholar 

  28. Browne RW, Koury ST, Marion S, Wilding G, Muti P, Trevisan M. Accuracy and biological variation of human serum paraoxonase 1 activity and polymorphism (Q192R) by kinetic enzyme assay. Clin Chem. 2007;53(2):310–17.

    Article  CAS  PubMed  Google Scholar 

  29. Browne RW, Armstrong D. Simultaneous determination of serum retinol, tocopherols, and carotenoids by HPLC. Methods Mol Biol. 1998;108:269–75.

    CAS  PubMed  Google Scholar 

  30. Otvos JD. Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. Clin Lab. 2002;48(3–4):171–80.

    CAS  PubMed  Google Scholar 

  31. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–06.

    Article  PubMed  Google Scholar 

  32. Zeger S, Liang K, Albert P. Models for longitudinal data: a generalized estimating equation approach. Biometrics. 1988;44(4):1049–60.

    Article  CAS  PubMed  Google Scholar 

  33. Yelland LN, Salter AB, Ryan P. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data. Am J Epidemiol. 2011;174(8):984–92.

    Article  PubMed  Google Scholar 

  34. Maheshwari A, Hamilton M, Bhattacharya S. Effect of female age on the diagnostic categories of infertility. Hum Reprod. 2008;23(3):538–42.

    Article  PubMed  Google Scholar 

  35. Maheshwari A, Stofberg L, Bhattacharya S. Effect of overweight and obesity on assisted reproductive technology a systematic review. Hum Reprod Update. 2007;13(5):433–44.

    Article  CAS  PubMed  Google Scholar 

  36. Pandey S, Maheshwari A, Bhattacharya S. The impact of female obesity on the outcome of fertility treatment. J Hum Reprod Sci. 2010;3(2):62–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sharara F, McClamrock H. Differences in in vitro fertilization (IVF) outcome between white and black women in an inner-city, university-based IVF program. Fertil Steril. 2000;73(6):1170–73.

    Article  CAS  PubMed  Google Scholar 

  38. Sharara FI, Fouany MR, Sharara YF, Abdo G. Racial differences in ART outcome between white and South Asian women. Middle East Fertil Soc J. 2012;17(2):89–92.

    Article  Google Scholar 

  39. Hughes E, Brennan B. Does cigarette smoking impair natural or assisted fecundity? Fertil Steril. 1996;66(5):679–89.

    Article  CAS  PubMed  Google Scholar 

  40. Pan W. Akaike’s information criterion in generalized estimating equations. Biometrics. 2001;57(1):120–25.

    Article  CAS  PubMed  Google Scholar 

  41. Savitz DA, Olshan AF. Multiple comparisons and related issues in the interpretation of epidemiologic data. Am J Epidemiol. 1995;142(9):904–08.

    Article  CAS  PubMed  Google Scholar 

  42. Jozwik M, Wolczynski S, Jozwik M, Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum Reprod. 1999;5(5):409–13.

    Article  CAS  PubMed  Google Scholar 

  43. Palan PR, Cohen BL, Barad DH, Romney SL. Effects of smoking on the levels of antioxidant beta carotene, alpha tocopherol and retinol in human ovarian follicular fluid. Gynecol Obstet Invest. 1995;39(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  44. Schweigert FJ, Steinhagen B, Raila J, Siemann A, Peet D, Buscher U. Concentrations of carotenoids, retinol and alpha-tocopherol in plasma and follicular fluid of women undergoing IVF. Hum Reprod. 2003;18(6):1259–64.

    Article  CAS  PubMed  Google Scholar 

  45. Behrens WA, Madere R. Alpha and gamma tocopherol concentrations in human serum. J Am Coll Nutr. 1986;5(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  46. Burton GW, Traber MG, Acuff RV, Walters DN, Kayden H, Hughes L, et al. Human plasma and tissue alpha-tocopherol concentrations in response to supplementation with deuterated natural and synthetic vitamin E. Am J Clin Nutr. 1998;67(4):669–84.

    CAS  PubMed  Google Scholar 

  47. Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31(7):671–701.

    Article  CAS  PubMed  Google Scholar 

  48. Wolf G. Gamma-tocopherol: an efficient protector of lipids against nitric oxide-initiated peroxidative damage. Nutr Rev. 1997;55(10):376–78.

    Article  CAS  PubMed  Google Scholar 

  49. Saldeen T, Li DY, Mehta JL. Differential effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis. J Am Coll Cardiol. 1999;34(4):1208–15.

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Q, Ames BN. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rats. FASEB J. 2003;17(8):816–22.

    Article  CAS  PubMed  Google Scholar 

  51. Wagner KH, Kamal-Eldin A, Elmadfa I. Gamma-tocopherol—an underestimated vitamin? Ann Nutr Metab. 2004;48(3):169–88.

    Article  CAS  PubMed  Google Scholar 

  52. Murphy SP, Subar AF, Block G. Vitamin E intakes and sources in the USA. Am J Clin Nutr. 1990;52(2):361–67.

    CAS  PubMed  Google Scholar 

  53. Traber MG, Kayden HJ. Preferential incorporation of alpha tocopherol vs gamma tocopherol in human lipoproteins. Am J Clin Nutr. 1989;49(3):517–26.

    CAS  PubMed  Google Scholar 

  54. Wu Z, Wagner MA, Zheng L, Parks JS, Shy Iii JM, Smith JD, et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat Struct Mol Biol. 2007;14(9):861–68.

    Article  CAS  PubMed  Google Scholar 

  55. Navab M, Hama SY, Cooke CJ, Anantharamaiah GM, Chaddha M, Jin L, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J Lipid Res. 2000;41(9):1481–94.

    CAS  PubMed  Google Scholar 

  56. Barter P, Kastelein J, Nunn A, Hobbs R, Shepherd J, Ballantyne C, et al. High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions. Atherosclerosis. 2003;168(2):195–211.

    Article  CAS  PubMed  Google Scholar 

  57. Yoshikawa M, Sakuma N, Hibino T, Sato T, Fujinami T. HDL 3 exerts more powerful anti-oxidative, protective effects against copper-catalyzed LDL oxidation than HDL 2. Clin Biochem. 1997;30(3):221–25.

    Article  CAS  PubMed  Google Scholar 

  58. Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vas Biol. 2003;23(10):1881–88.

    Article  CAS  Google Scholar 

  59. Huang JM, Huang ZX, Zhu W. Mechanism of high-density lipoprotein subfractions inhibiting copper-catalyzed oxidation of low-density lipoprotein. Clin Biochem. 1998;31(7):537–43.

    Article  CAS  PubMed  Google Scholar 

  60. Aviram M, Rosenblat M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med. 2004;37(9):1304–16.

    Article  CAS  PubMed  Google Scholar 

  61. Gérard N, Loiseau S, Duchamp G, Seguin F. Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (1H NMR). Reproduction. 2002;124(2):241–48.

    Article  PubMed  Google Scholar 

  62. Piñero-Sagredo E, Nunes S, De Los Santos MJ, Celda B, Esteve V. NMR metabolic profile of human follicular fluid. NMR Biomed. 2010;23(5):485–95.

    Article  PubMed  Google Scholar 

  63. Baskind NE, McRae C, Sharma V, Fisher J. Understanding subfertility at a molecular level in the female through the application of nuclear magnetic resonance (NMR) spectroscopy. Hum Reprod Update. 2011;17(2):228–41.

    Article  CAS  PubMed  Google Scholar 

  64. Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil Steril. 2012;97(5):1078–84. e1-8.

    Article  CAS  PubMed  Google Scholar 

  65. Leroy JLMR, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PEJ, et al. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci. 2004;80(3–4):201–11.

    Article  CAS  PubMed  Google Scholar 

  66. Nandi S, Gupta PSP, Selvaraju S, Roy SC, Ravindra JP. Effects of exposure to heavy metals on viability, maturation, fertilization, and embryonic development of buffalo (Bubalus bubalis) oocytes in vitro. Arch Environ Contam Toxicol. 2010;58(1):194–204.

    Article  CAS  PubMed  Google Scholar 

  67. Tomsu M, Sharma V, Miller D. Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameters. Hum Reprod. 2002;17(7):1856–62.

    Article  CAS  PubMed  Google Scholar 

  68. Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod. 2002;17(1):184–89.

    Article  PubMed  Google Scholar 

  69. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19(3):611–15.

    Article  CAS  PubMed  Google Scholar 

  70. Buck Louis G, Schisterman E, Dukic V, Schieve L. Research hurdles complicating the analysis of infertility treatment and child health. Hum Reprod. 2005;20(1):12–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ying Wang, PhD MPH for providing critical feedback for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Bloom.

Ethics declarations

Study funding

Supported by the National Institutes of Health, National Institute on Aging (Grant R21 AG03957–01A2).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Capsule FF HDL lipophilic micronutrients and protein components, as well as HDL-C particle size, may be important predictors of embryo quality during IVF.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplemental Table 1 Assessment of interactions between follicular fluid (FF) high density lipoprotein (HDL) particle components selected as predictors of dichotomized embryo cell number (ECN). (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Bloom, M.S., Browne, R.W. et al. Associations between follicular fluid high density lipoprotein particle components and embryo quality among in vitro fertilization patients. J Assist Reprod Genet 34, 1–10 (2017). https://doi.org/10.1007/s10815-016-0826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0826-x

Keywords

Navigation