Skip to main content
Log in

Genetic association between PAX2 and mullerian duct anomalies in Han Chinese females

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The study aims to investigate the genetic association between paired box gene 2 (PAX2) and mullerian duct anomalies (MDA) in Chinese Han females.

Methods

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify the genotypes of three tag single nucleotide polymorphisms (SNPs) in PAX2 in 362 MDA cases and 406 controls.

Results

We found that one tag SNP (rs12266644) of PAX2 was associated with susceptibility to MDA. The genotype distributions of the SNP rs12266644 have a statistically significant difference in the MDA patients and controls with a p value = 0.008. In the dominant model, we also observed that the GT + TT genotype increased the risk for MDA (p = 0.015, OR = 1.637, 95 % CI = 1.096–2.443).

Conclusion

The polymorphism rs12266644 of PAX2 might be a risk factor for MDA in Chinese Han females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. The American Fertility Society classifications of adnexal adhesions. Distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, mullerian anomalies and intrauterine adhesions. Fertil Steril. 1988;49(6):944–55.

    Article  Google Scholar 

  2. Ribeiro SC, Tormena RA, Peterson TV, et al. Mullerian duct anomalies: review of current management. Sao Paulo Med J Rev Paul Med. 2009;127(2):92–6.

    Article  Google Scholar 

  3. Vallerie AM, Breech LL. Update in Mullerian anomalies: diagnosis, management, and outcomes. Curr Opin Obstet Gynecol. 2010;22(5):381–7.

    Article  PubMed  Google Scholar 

  4. Acien P, Acien M, Sanchez-Ferrer M. Complex malformations of the female genital tract. New types and revision of classification. Hum Reprod. 2004;19(10):2377–84.

    Article  PubMed  Google Scholar 

  5. Pittock ST, Babovic-Vuksanovic D, Lteif A. Mayer-Rokitansky-Kuster-Hauser anomaly and its associated malformations. Am J Med Genet A. 2005;135(3):314–6.

    Article  PubMed  Google Scholar 

  6. Cheroki C, Krepischi-Santos AC, Szuhai K, et al. Genomic imbalances associated with mullerian aplasia. J Med Genet. 2008;45(4):228–32.

    Article  CAS  PubMed  Google Scholar 

  7. Philibert P, Biason-Lauber A, Gueorguieva I, et al. Molecular analysis of WNT4 gene in four adolescent girls with mullerian duct abnormality and hyperandrogenism (atypical Mayer-Rokitansky-Kuster-Hauser syndrome). Fertil Steril. 2011;95(8):2683–6.

    Article  CAS  PubMed  Google Scholar 

  8. Wu K, Chang X, Wei D, Xu C, Qin Y, Chen ZJ. Lack of association of WNT5A mutations with Mullerian duct abnormalities. Reprod Biomed Online. 2013;26(2):164–7.

    Article  CAS  PubMed  Google Scholar 

  9. Dang Y, Qin Y, Tang R, et al. Variants of the WNT7A gene in Chinese patients with mullerian duct abnormalities. Fertil Steril. 2012;97(2):391–4.

    Article  CAS  PubMed  Google Scholar 

  10. Tang R, Dang Y, Qin Y, et al. WNT9B in 542 Chinese women with Mullerian duct abnormalities: mutation analysis. Reprod Biomed Online. 2014;28(4):503–7.

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, Mu Y, Li C, et al. Mutation screening of HOXA7 and HOXA9 genes in Chinese women with Mullerian duct abnormalities. Reprod Biomed Online. 2014;29(5):595–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ekici AB, Strissel PL, Oppelt PG, et al. HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina. Gene. 2013;518(2):267–72.

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Li G, Qin Y, Cui Y, You L, Chen ZJ. Mutations in HOXA11 are not responsible for Mullerian duct anomalies in Chinese patients. Reprod Biomed Online. 2014;28(6):739–42.

    Article  CAS  PubMed  Google Scholar 

  14. Sandbacka M, Laivuori H, Freitas E, et al. TBX6, LHX1 and copy number variations in the complex genetics of Mullerian aplasia. Orphanet J Rare Dis. 2013;8:125.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuschert S, Rowitch DH, Haenig B, McMahon AP, Kispert A. Characterization of Pax-2 regulatory sequences that direct transgene expression in the Wolffian duct and its derivatives. Dev Biol. 2001;229(1):128–40.

    Article  CAS  PubMed  Google Scholar 

  16. Tong G-X, Chiriboga L, Hamele-Bena D, Borczuk AC. Expression of PAX2 in papillary serous carcinoma of the ovary: immunohistochemical evidence of fallopian tube or secondary Müllerian system origin? Mod Pathol. 2007;20(8):856–63.

    Article  CAS  PubMed  Google Scholar 

  17. Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Dev (Cambridge, England). 1995;121(12):4057–65.

    CAS  Google Scholar 

  18. Favor J, Sandulache R, Neuhauser-Klaus A, et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A. 1996;93(24):13870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schimmenti LA. Renal coloboma syndrome. Eur J Human Genet: EJHG. 2011;19(12):1207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169(4):505–14.

    Article  PubMed  PubMed Central  Google Scholar 

  21. YongYongSHI LHE. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8.

    Article  Google Scholar 

  22. Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003;4(12):969–80.

    Article  CAS  PubMed  Google Scholar 

  23. Rackow BW, Arici A. Reproductive performance of women with mullerian anomalies. Curr Opin Obstet Gynecol. 2007;19(3):229–37.

    Article  PubMed  Google Scholar 

  24. Gruss P, Walther C. Pax in development. Cell. 1992;69(5):719–22.

    Article  CAS  PubMed  Google Scholar 

  25. Sharma R, Sanchez-Ferras O, Bouchard M. Pax genes in renal development, disease and regeneration. Semin Cell Dev Biol. 2015;44:97–106.

    Article  CAS  PubMed  Google Scholar 

  26. Rabban JT, McAlhany S, Lerwill MF, Grenert JP, Zaloudek CJ. PAX2 distinguishes benign mesonephric and mullerian glandular lesions of the cervix from endocervical adenocarcinoma, including minimal deviation adenocarcinoma. Am J Surg Pathol. 2010;34(2):137–46.

    Article  PubMed  Google Scholar 

  27. Klattig J, Englert C. The Mullerian duct: recent insights into its development and regression. Sex Dev: Genet, Mol Biol, Evol, Endocrinol, Embryol, Pathol Sex Determ Differ. 2007;1(5):271–8.

    Article  CAS  Google Scholar 

  28. Eberhard D, Jimenez G, Heavey B, Busslinger M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 2000;19(10):2292–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai Y, Lechner MS, Nihalani D, Prindle MJ, Holzman LB, Dressler GR. Phosphorylation of Pax2 by the c-Jun N-terminal kinase and enhanced Pax2-dependent transcription activation. J Biol Chem. 2002;277(2):1217–22.

    Article  CAS  PubMed  Google Scholar 

  30. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  31. Huang CC, Orvis GD, Kwan KM, Behringer RR. Lhx1 is required in Mullerian duct epithelium for uterine development. Dev Biol. 2014;389(2):124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank all the participants in this study; without them, the research could not have been performed. This study was supported by the National Natural Science Foundation of China (81370691), the National Basic Research Program of China (2012CB944704), and the Research Fund of National Health and Family Planning Commission of China (201402004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binbin Wang or Yunxia Cao.

Ethics declarations

All the participants signed written informed consents. Our experiment was approved by the local ethics committee and conformed to the ethical guidelines of the 1975 Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Capsule The PAX2 variant rs12266644 might increase the risk for mullerian duct anomalies in Chinese women.

Zuying Xu and Shinan Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Wu, S., Xing, Q. et al. Genetic association between PAX2 and mullerian duct anomalies in Han Chinese females. J Assist Reprod Genet 34, 125–129 (2017). https://doi.org/10.1007/s10815-016-0807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0807-0

Keywords

Navigation