Skip to main content

Advertisement

Log in

Protein expression in human cumulus cells as an indicator of blastocyst formation and pregnancy success

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The goal for the present study was to implement a technique for protein extraction and identification in human cumulus cells (CCs).

Methods

Forty samples of CCs were collected after ovum pick-up from patients undergoing intracytoplasmic sperm injection (ICSI). Samples were split into the blastocyst group (n = 10), including patients in which all embryos converted into blastocysts, and the non-blastocyst group (n = 10), including patients in which none of the embryos reached the blastocyst stage or the positive-pregnancy (n = 10) and negative-pregnancy group (n = 10). Proteins were extracted and injected into a liquid chromatography system coupled to a mass spectrometer. The spectra were processed and used to search a database.

Results

There were 87 different proteins in samples from the blastocyst and non-blastocyst groups, in which 30 were exclusively expressed in the blastocyst group and 17 in the non-blastocyst group. Among the 72 proteins detected in the pregnancy groups, 19 were exclusively expressed in the positive, and 16 were exclusively expressed in the negative-pregnancy group.

Conclusions

CC proteomics may be useful for predicting pregnancy success and the identification of patients that should be included in extended embryo culture programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.

    Article  CAS  PubMed  Google Scholar 

  2. Andersen AN, Goossens V, Ferraretti AP, Bhattacharya S, Felberbaum R, de Mouzon J, et al. Assisted reproductive technology in Europe, 2004: results generated from European registers by ESHRE. Hum Reprod. 2008;23(4):756–71.

    Article  PubMed  Google Scholar 

  3. Pandian Z, Bhattacharya S, Ozturk O, Serour G, Templeton A. Number of embryos for transfer following in-vitro fertilisation or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2009;2:CD003416.

    Google Scholar 

  4. Setti PE, Bulletti C. Strategies to improve embryo implantation to supraphysiological rates. Ann N Y Acad Sci. 2011;1221:75–9.

    Article  PubMed  Google Scholar 

  5. Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007;4:CD002118.

    Google Scholar 

  6. Papanikolaou EG, Kolibianakis EM, Tournaye H, Venetis CA, Fatemi H, Tarlatzis B, et al. Live birth rates after transfer of equal number of blastocysts or cleavage-stage embryos in IVF. A systematic review and meta-analysis. Hum Reprod. 2008;23(1):91–9.

    Article  PubMed  Google Scholar 

  7. Tesarik J, Kopecny V, Plachot M, Mandelbaum J. Early morphological signs of embryonic genome expression in human preimplantation development as revealed by quantitative electron microscopy. Dev Biol. 1988;128(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  8. Langley MT, Marek DM, Gardner DK, Doody KM, Doody KJ. Extended embryo culture in human assisted reproduction treatments. Hum Reprod. 2001;16(5):902–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson M, Hartke K, Kiehl M, Rodgers J, Brabec C, Lyles R. Integration of blastocyst transfer for all patients. Fertil Steril. 2002;77(4):693–6.

    Article  PubMed  Google Scholar 

  10. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81(3):551–5.

    Article  CAS  PubMed  Google Scholar 

  11. Ryan GL, Sparks AE, Sipe CS, Syrop CH, Dokras A, Van Voorhis BJ. A mandatory single blastocyst transfer policy with educational campaign in a United States IVF program reduces multiple gestation rates without sacrificing pregnancy rates. Fertil Steril. 2007;88(2):354–60.

    Article  PubMed  Google Scholar 

  12. Braga DP, Setti AS, de Cassia SFR, Machado RB, Iaconelli Jr A, Borges Jr E. Patient selection criteria for blastocyst transfers in extended embryo culture programs. J Assist Reprod Genet. 2012;29(12):1357–62.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23(5):1118–27.

    Article  CAS  PubMed  Google Scholar 

  15. Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod. 2008;14(12):679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bromer JG, Seli E. Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Curr Opin Obstet Gynecol. 2008;20(3):234–41.

    Article  PubMed  Google Scholar 

  17. Aydiner F, Yetkin CE, Seli E. Perspectives on emerging biomarkers for non-invasive assessment of embryo viability in assisted reproduction. Curr Mol Med. 2010;10(2):206–15.

    Article  CAS  PubMed  Google Scholar 

  18. Ferreira CR, Turco EGL, Saraiva SA, Bertolla RP, Perecin F, Souza GHFM, et al. Proteomics, Metabolomis and Lipidomics in Reproductive Biotechnologies: The MS Solutions. Acta Sci Vet. 2010;38:s277–89.

    Google Scholar 

  19. Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB, et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010;94(2):535–42.

    Article  PubMed  Google Scholar 

  20. Cortezzi SS, Garcia JS, Ferreira CR, Braga DP, Figueira RC, Iaconelli Jr A, et al. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. Anal Bioanal Chem. 2011;401(4):1331–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88(4):399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patrizio P, Fragouli E, Bianchi V, Borini A, Wells D. Molecular methods for selection of the ideal oocyte. Reprod Biomed Online. 2007;15(3):346–53.

    Article  CAS  PubMed  Google Scholar 

  23. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16(10):715–25.

    Article  CAS  PubMed  Google Scholar 

  24. van Montfoort AP, Geraedts JP, Dumoulin JC, Stassen AP, Evers JL, Ayoubi TA. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol Hum Reprod. 2008;14(3):157–68.

    Article  PubMed  Google Scholar 

  25. Hamel M, Dufort I, Robert C, Leveille MC, Leader A, Sirard MA. Genomic assessment of follicular marker genes as pregnancy predictors for human IVF. Mol Hum Reprod. 2010;16(2):87–96.

    Article  CAS  PubMed  Google Scholar 

  26. Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14(12):711–9.

    Article  CAS  PubMed  Google Scholar 

  27. Assou S, Boumela I, Haouzi D, Anahory T, Dechaud H, De Vos J, et al. Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications. Hum Reprod Update. 2011;17(2):272–90.

    Article  CAS  PubMed  Google Scholar 

  28. Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, et al. Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online. 2007;14(2):175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Latham KE, Garrels JI, Chang C, Solter D. Analysis of embryonic mouse development: construction of a high-resolution, two-dimensional gel protein database. Appl Theor Electrophor. 1992;2(6):163–70.

    CAS  PubMed  Google Scholar 

  30. Shi CZ, Collins HW, Garside WT, Buettger CW, Matschinsky FM, Heyner S. Protein databases for compacted eight-cell and blastocyst-stage mouse embryos. Mol Reprod Dev. 1994;37(1):34–47.

    Article  CAS  PubMed  Google Scholar 

  31. Navarrete Santos A, Tonack S, Kirstein M, Kietz S, Fischer B. Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction. 2004;128(5):503–16.

    Article  PubMed  Google Scholar 

  32. Wang HM, Zhang X, Qian D, Lin HY, Li QL, Liu DL, et al. Effect of ubiquitin-proteasome pathway on mouse blastocyst implantation and expression of matrix metalloproteinases-2 and -9. Biol Reprod. 2004;70(2):481–7.

    Article  CAS  PubMed  Google Scholar 

  33. Gutstein HB, Morris JS, Annangudi SP, Sweedler JV. Microproteomics: analysis of protein diversity in small samples. Mass Spectrom Rev. 2008;27(4):316–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jansen C, Hebeda KM, Linkels M, Grefte JM, Raemaekers JM, van Krieken JH, et al. Protein profiling of B-cell lymphomas using tissue biopsies: A potential tool for small samples in pathology. Cell Oncol. 2008;30(1):27–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4(9):1265–72.

    Article  CAS  PubMed  Google Scholar 

  37. Hamamah S, Matha V, Berthenet C, Anahory T, Loup V, Dechaud H, et al. Comparative protein expression profiling in human cumulus cells in relation to oocyte fertilization and ovarian stimulation protocol. Reprod Biomed Online. 2006;13(6):807–14.

    Article  CAS  PubMed  Google Scholar 

  38. Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100(1):100–7. e1.

    Article  PubMed  Google Scholar 

  39. Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;7:CD002118.

    Google Scholar 

  40. Zhang X, Jafari N, Barnes RB, Confino E, Milad M, Kazer RR. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril. 2005;83 Suppl 1:1169–79.

    Article  CAS  PubMed  Google Scholar 

  41. Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134(5):645–50.

    Article  CAS  PubMed  Google Scholar 

  42. Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22(12):3069–77.

    Article  CAS  PubMed  Google Scholar 

  43. McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19(12):2869–74.

    Article  CAS  PubMed  Google Scholar 

  44. Anderson RA, Sciorio R, Kinnell H, Bayne RA, Thong KJ, de Sousa PA, et al. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009;138(4):629–37.

    Article  CAS  PubMed  Google Scholar 

  45. Williamson AJ, Smith DL, Blinco D, Unwin RD, Pearson S, Wilson C, et al. Quantitative proteomics analysis demonstrates post-transcriptional regulation of embryonic stem cell differentiation to hematopoiesis. Mol Cell Proteomics. 2008;7(3):459–72.

    Article  CAS  PubMed  Google Scholar 

  46. Burnik Papler T, Vrtacnik Bokal E, Maver A, Kopitar AN, Lovrecic L. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells. PLoS One. 2015;10(8):e0136473.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Haouzi D, Dechaud H, Assou S, De Vos J, Hamamah S. Insights into human endometrial receptivity from transcriptomic and proteomic data. Reprod Biomed Online. 2012;24(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  48. Horcajadas JA, Sharkey AM, Catalano RD, Sherwin JR, Dominguez F, Burgos LA, et al. Effect of an intrauterine device on the gene expression profile of the endometrium. J Clin Endocrinol Metab. 2006;91(8):3199–207.

    Article  CAS  PubMed  Google Scholar 

  49. Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148(8):3814–26.

    Article  CAS  PubMed  Google Scholar 

  50. Chen JI, Hannan NJ, Mak Y, Nicholls PK, Zhang J, Rainczuk A, et al. Proteomic characterization of midproliferative and midsecretory human endometrium. J Proteome Res. 2009;8(4):2032–44.

    Article  CAS  PubMed  Google Scholar 

  51. Ito M, Imai M, Muraki M, Miyado K, Qin J, Kyuwa S, et al. GSTT1 is upregulated by oxidative stress through p38-MK2 signaling pathway in human granulosa cells: possible association with mitochondrial activity. Aging (Albany NY). 2011;3(12):1213–23.

    Article  CAS  Google Scholar 

  52. Cheng JZ, Singhal SS, Sharma A, Saini M, Yang Y, Awasthi S, et al. Transfection of mGSTA4 in HL-60 cells protects against 4-hydroxynonenal-induced apoptosis by inhibiting JNK-mediated signaling. Arch Biochem Biophys. 2001;392(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  53. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, et al. Regulation of JNK signaling by GSTp. EMBO J. 1999;18(5):1321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Desmots F, Rissel M, Gilot D, Lagadic-Gossmann D, Morel F, Guguen-Guillouzo C, et al. Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem. 2002;277(20):17892–900.

    Article  CAS  PubMed  Google Scholar 

  55. Kuo WH, Chou FP, Young SC, Chang YC, Wang CJ. Geniposide activates GSH S-transferase by the induction of GST M1 and GST M2 subunits involving the transcription and phosphorylation of MEK-1 signaling in rat hepatocytes. Toxicol Appl Pharmacol. 2005;208(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  56. Yamashita Y, Hishinuma M, Shimada M. Activation of PKA, p38 MAPK and ERK1/2 by gonadotropins in cumulus cells is critical for induction of EGF-like factor and TACE/ADAM17 gene expression during in vitro maturation of porcine COCs. J Ovarian Res. 2009;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Villa-Diaz LG, Miyano T. Activation of p38 MAPK during porcine oocyte maturation. Biol Reprod. 2004;71(2):691–6.

    Article  CAS  PubMed  Google Scholar 

  58. Salhab M, Tosca L, Cabau C, Papillier P, Perreau C, Dupont J, et al. Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and progesterone secretion. Theriogenology. 2011;75(1):90–104.

    Article  CAS  PubMed  Google Scholar 

  59. Manna PR, Stocco DM. The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. J Signal Transduct. 2011;2011:821615.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Inagaki K, Otsuka F, Miyoshi T, Yamashita M, Takahashi M, Goto J, et al. p38-Mitogen-activated protein kinase stimulated steroidogenesis in granulosa cell-oocyte cocultures: role of bone morphogenetic proteins 2 and 4. Endocrinology. 2009;150(4):1921–30.

    Article  CAS  PubMed  Google Scholar 

  61. Schroeder Jr HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S41–52.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Twigt J, Steegers-Theunissen RP, Bezstarosti K, Demmers JA. Proteomic analysis of the microenvironment of developing oocytes. Proteomics. 2012;12(9):1463–71.

    Article  CAS  PubMed  Google Scholar 

  63. Bayasula, Iwase A, Kobayashi H, Goto M, Nakahara T, Nakamura T, et al. A proteomic analysis of human follicular fluid: comparison between fertilized oocytes and non-fertilized oocytes in the same patient. J Assist Reprod Genet. 2013;30(9):1231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim YS, Kim MS, Lee SH, Choi BC, Lim JM, Cha KY, et al. Proteomic analysis of recurrent spontaneous abortion: Identification of an inadequately expressed set of proteins in human follicular fluid. Proteomics. 2006;6(11):3445–54.

    Article  CAS  PubMed  Google Scholar 

  65. Edassery SL, Shatavi SV, Kunkel JP, Hauer C, Brucker C, Penumatsa K, et al. Autoantigens in ovarian autoimmunity associated with unexplained infertility and premature ovarian failure. Fertil Steril. 2010;94(7):2636–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beardsley AJ, Li Y, O’Neill C. Characterization of a diverse secretome generated by the mouse preimplantation embryo in vitro. Reprod Biol Endocrinol. 2010;8:71.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Noiva R, Lennarz WJ. Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem. 1992;267(6):3553–6.

    CAS  PubMed  Google Scholar 

  68. Bulleid NJ, Freedman RB. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature. 1988;335(6191):649–51.

    Article  CAS  PubMed  Google Scholar 

  69. Sagata N, Oskarsson M, Copeland T, Brumbaugh J, Vande Woude GF. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature. 1988;335(6190):519–25.

    Article  CAS  PubMed  Google Scholar 

  70. Daar I, Paules RS, Vande Woude GF. A characterization of cytostatic factor activity from Xenopus eggs and c-mos-transformed cells. J Cell Biol. 1991;114(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  71. Hashimoto N, Watanabe N, Furuta Y, Tamemoto H, Sagata N, Yokoyama M, et al. Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature. 1994;370(6484):68–71.

    Article  CAS  PubMed  Google Scholar 

  72. Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril. 2006;85(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  73. Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86(3):678–85.

    Article  CAS  PubMed  Google Scholar 

  74. Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod. 2010;16(8):513–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, a Brazilian founding agency: 2013/50052-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Borges Jr..

Additional information

Capsule

CC proteomics may be useful for predicting pregnancy success and the identification of patients that should be included in extended embryo culture programs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, D.P.A.F., Setti, A.S., Lo Turco, E.G. et al. Protein expression in human cumulus cells as an indicator of blastocyst formation and pregnancy success. J Assist Reprod Genet 33, 1571–1583 (2016). https://doi.org/10.1007/s10815-016-0800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0800-7

Keywords

Navigation