Skip to main content
Log in

Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration.

Methods

Samples were studied by light and transmission electron microscopy.

Results

We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed.

Conclusions

This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cil AP, Seli E. Current trends and progress in clinical applications of oocyte cryopreservation. Curr Opin Obstet Gynecol. 2013;25:247–54.

    Article  PubMed  Google Scholar 

  2. Lockwood GM. Social egg freezing: the prospect of reproductive ‘immortality’ or a dangerous delusion? Reprod Biomed Online. 2011;23:334–40.

    Article  PubMed  Google Scholar 

  3. Hosseini SM, Nasr-Esfahani MH. What does the cryopreserved oocyte look like? A fresh look at the characteristic oocyte features following cryopreservation. Reprod Biomed Online. 2016;32:377–87.

    Article  PubMed  Google Scholar 

  4. Van Blerkom J, Davis PW. Cytogenetic, cellular, and developmental consequences of cryopreservation of immature and mature mouse and human oocytes. Microsc Res Tech. 1994;27:165–93.

    Article  PubMed  Google Scholar 

  5. Coticchio G, Bonu MA, Sciajno R, Sereni E, Bianchi V, Borini A. Truths and myths of oocyte sensitivity to controlled rate freezing. Reprod Biomed Online. 2007;15:24–30.

    Article  CAS  PubMed  Google Scholar 

  6. Gardner DK, Sheehan CB, Rienzi L, Katz-Jaffe M, Larman MG. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology. 2007;67:64–72.

    Article  CAS  PubMed  Google Scholar 

  7. Gook DA, Edgar DH. Human oocyte cryopreservation. Hum Reprod Update. 2007;13:591–605.

    Article  PubMed  Google Scholar 

  8. Lornage J, Salle B. Ovarian and oocyte cryopreservation. Curr Opin Obstet Gynecol. 2007;19:390–4.

    Article  PubMed  Google Scholar 

  9. Clark NA, Swain JE. Oocyte cryopreservation: searching for novel improvement strategies. J Assist Reprod Genet. 2013;30:865–75.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Coticchio G, De Santis L, Rossi G, Borini A, Albertini D, Scaravelli G, et al. Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configurations after slow-cooling cryopreservation. Hum Reprod. 2006;21:1771–6.

    Article  CAS  PubMed  Google Scholar 

  11. Coticchio G, Bromfield JJ, Sciajno R, Gambardella A, Scaravelli G, Borini A, et al. Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod Biomed Online. 2009;19 Suppl 3:29–34.

    Article  PubMed  Google Scholar 

  12. Coticchio G, Borini A, Distratis V, Maione M, Scaravelli G, Bianchi V, et al. Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. J Assist Reprod Genet. 2010;27:131–40.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nottola SA, Macchiarelli G, Coticchio G, Bianchi S, Cecconi S, De Santis L, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum Reprod. 2007;22:1123–33.

    Article  CAS  PubMed  Google Scholar 

  14. Nottola SA, Coticchio G, De Santis L, Macchiarelli G, Maione M, Bianchi S, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reprod Biomed Online. 2008;17:368–77.

    Article  CAS  PubMed  Google Scholar 

  15. Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, et al. Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online. 2009;19 Suppl 3:17–27.

    Article  PubMed  Google Scholar 

  16. Bromfield JJ, Coticchio G, Hutt K, Sciajno R, Borini A, Albertini DF. Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum Reprod. 2009;24:2114–23.

    Article  CAS  PubMed  Google Scholar 

  17. Bianchi V, Macchiarelli G, Borini A, Lappi M, Cecconi S, Miglietta S, et al. Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis. Reprod Biol Endocrinol. 2014;12:110.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Camboni A, Martinez-Madrid B, Dolmans MM, Amorim CA, Nottola SA, Donnez J, et al. Preservation of fertility in young cancer patients: contribution of transmission electron microscopy. Reprod Biomed Online. 2008;17:136–50.

    Article  PubMed  Google Scholar 

  19. Sundström P, Nilsson BO, Liedholm P, Larsson E. Ultrastructural characteristics of human oocytes fixed at follicular puncture or after culture. J In Vitro Fert Embryo Transf. 1985;2:195–206.

    Article  PubMed  Google Scholar 

  20. Motta PM, Nottola SA, Micara G, Familiari G. Ultrastructure of human unfertilized oocytes and polyspermic embryos in an IVF-ET program. Ann N Y Acad Sci. 1988;541:367–83.

    Article  CAS  PubMed  Google Scholar 

  21. Sathananthan AH, Ng S-C, Bongso A, Trounson A, Ratnam S. Visual atlas of early human development for assisted reproductive technology. Singapore: National University of Singapore; 1993.

    Google Scholar 

  22. El Shafie M, Sousa M, Windt ML, Kruger TF. An atlas of the ultrastructure of human oocytes. New York: Parthenon Publishing; 2000.

    Google Scholar 

  23. Makabe S, Van Blerkom J, Nottola SA, Naguro T. Atlas of human female reproductive function. ovarian development to early embryogenesis after in vitro fertilization. London: Taylor & Francis; 2006.

    Google Scholar 

  24. Ghetler Y, Skutelsky E, Ben Nun I, Ben Dor L, Amihai D, Shalgi R. Human oocyte cryopreservation and the fate of cortical granules. Fertil Steril. 2006;86:210–6.

    Article  PubMed  Google Scholar 

  25. Gualtieri R, Iaccarino M, Mollo V, Prisco M, Iaccarino S, Talevi R. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil Steril. 2009;91:1023–34.

    Article  PubMed  Google Scholar 

  26. Sousa M, Cunha M, Silva J, Oliveira E, Pinho MJ, Almeida C, et al. Ultrastructural and cytogenetic analyses of mature human oocyte dysmorphisms with respect to clinical outcomes. J Assist Reprod Genet. 2016;33:1041–57.

    Article  PubMed  Google Scholar 

  27. Fancsovits P, Murber A, Gilán ZT, Rigó Jr J, Urbancsek J. Human oocytes containing large cytoplasmic vacuoles can result in pregnancy and viable offspring. Reprod Biomed Online. 2011;23:513–6.

    Article  PubMed  Google Scholar 

  28. Setti AS, Figueira RC, Braga DP, Colturato SS, Iaconelli Jr A, Borges Jr E. Relationship between oocyte abnormal morphology and intracytoplasmic sperm injection outcomes: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2011;159:364–70.

    Article  PubMed  Google Scholar 

  29. Ebner T, Moser M, Sommergruber M, Gaiswinkler U, Shebl O, Jesacher K, et al. Occurrence and developmental consequences of vacuoles throughout preimplantation development. Fertil Steril. 2005;83:1635–40.

    Article  PubMed  Google Scholar 

  30. Wallbutton S, Kasraie J. Vacuolated oocytes: fertilization and embryonic arrest following intra-cytoplasmic sperm injection in a patient exhibiting persistent oocyte macro vacuolization—case report. J Assist Reprod Genet. 2010;27:183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Szöllösi D, Mandelbaum J, Plachot M, Salat-Baroux J, Cohen J. Ultrastructure of the human preovulatory oocyte. J In Vitro Fert Embryo Transf. 1986;3:232–42.

    Article  PubMed  Google Scholar 

  32. Familiari G, Heyn R, Relucenti M, Nottola SA, Sathananthan AH. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development. Int Rev Cytol. 2006;249:53–141.

    Article  CAS  PubMed  Google Scholar 

  33. Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod. 2000;15 Suppl 2:129–47.

    Article  PubMed  Google Scholar 

  34. Motta PM, Nottola SA, Familiari G, Makabe S, Stallone T, Macchiarelli G. Morphodynamics of the follicular-luteal complex during early ovarian development and reproductive life. Int Rev Cytol. 2003;223:177–288.

    Article  PubMed  Google Scholar 

  35. Dumollard R, Duchen M, Sardet C. Calcium signals and mitochondria at fertilisation. Semin Cell Dev Biol. 2006;17:314–23.

    Article  CAS  PubMed  Google Scholar 

  36. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813.

    Article  PubMed  Google Scholar 

  37. Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: the need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium. 2013;53:41–54.

    Article  CAS  PubMed  Google Scholar 

  38. Bianchi S, Macchiarelli G, Micara G, Linari A, Boninsegna C, Aragona C, et al. Ultrastructural markers of quality are impaired in human metaphase II aged oocytes: a comparison between reproductive and in vitro aging. J Assist Reprod Genet. 2015;32:1343–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Otsuki J, Okada A, Morimoto K, Nagai Y, Kubo H. The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod. 2004;19:1591–7.

    Article  CAS  PubMed  Google Scholar 

  40. Sá R, Cunha M, Silva J, Luís A, Oliveira C, Teixeira Da Silva J, et al. Ultrastructure of tubular smooth endoplasmic reticulum aggregates in human metaphase II oocytes and clinical implications. Fertil Steril. 2011;96:143–149.e7.

    Article  PubMed  Google Scholar 

  41. Mateizel I, Van Landuyt L, Tournaye H, Verheyen G. Deliveries of normal healthy babies from embryos originating from oocytes showing the presence of smooth endoplasmic reticulum aggregates. Hum Reprod. 2013;28:2111–7.

    Article  CAS  PubMed  Google Scholar 

  42. Van Beirs N, Shaw-Jackson C, Rozenberg S, Autin C. Policy of ivf centres towards oocytes affected by smooth endoplasmic reticulum aggregates: a multicentre survey study. J Assist Reprod Genet. 2015;32:945–50.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shaw-Jackson C, Thomas AL, Van Beirs N, Ameye L, Colin J, Bertrand E, et al. Oocytes affected by smooth endoplasmic reticulum aggregates: to discard or not to discard? Arch Gynecol Obstet. 2016;294:175–84.

    Article  PubMed  Google Scholar 

  44. Vincent C, Pickering SJ, Johnson MH. The hardening effect of dimethylsulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present. J Reprod Fertil. 1990;89:253–9.

    Article  CAS  PubMed  Google Scholar 

  45. Al Hasani S, Diedrich K. Oocyte storage. In: Grudzinskas JG, Yovich JL, editors. Gametes—the oocyte. Cambridge: Cambridge University Press; 1995. p. 376–94.

    Google Scholar 

  46. Fuku E, Xia L, Downey BR. Ultrastructural changes in bovine oocytes cryopreserved by vitrification. Cryobiology. 1995;32:139–56.

    Article  CAS  PubMed  Google Scholar 

  47. Fuku EJ, Liu J, Downey BR. In vitro viability and ultrastructural changes in bovine oocytes treated with a vitrification solution. Mol Reprod Dev. 1995;40:177–85.

    Article  CAS  PubMed  Google Scholar 

  48. Hyttel P, Vajta G, Callesen H. Vitrification of bovine oocytes with the open pulled straw method: ultrastructural consequences. Mol Reprod Dev. 2000;56:80–8.

    Article  CAS  PubMed  Google Scholar 

  49. Valojerdi MR, Salehnia M. Developmental potential and ultrastructural injuries of metaphase II (MII) mouse oocytes after slow freezing or vitrification. J Assist Reprod Genet. 2005;22:119–27.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schalkoff ME, Oskowitz SP, Powers RD. Ultrastructural observations of human and mouse oocytes treated with cryopreservatives. Biol Reprod. 1989;40:379–93.

    Article  CAS  PubMed  Google Scholar 

  51. Jones A, Van Blerkom J, Davis P, Toledo AA. Cryopreservation of metaphase II human oocytes effects mitochondrial membrane potential: implications for developmental competence. Hum Reprod. 2004;19:1861–6.

    Article  PubMed  Google Scholar 

  52. Borini A, Levi Setti PE, Anserini P, De Luca R, De Santis L, Porcu E, et al. Multicenter observational study on slow-cooling oocyte cryopreservation: clinical outcome. Fertil Steril. 2010;94:1662–8.

    Article  PubMed  Google Scholar 

  53. Ebner T, Moser M, Sommergruber M, Tews G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod Update. 2003;9:251–62.

    Article  CAS  PubMed  Google Scholar 

  54. Nottola SA, Heyn R, Camboni A, Correr S, Macchiarelli G. Ultrastructural characteristics of human granulosa cells in a coculture system for in vitro fertilization. Microsc Res Tech. 2006;69:508–16.

    Article  PubMed  Google Scholar 

  55. Khalili MA, Maione M, Palmerini MG, Bianchi S, Macchiarelli G, Nottola SA. Ultrastructure of human mature oocytes after vitrification. Eur J Histochem. 2012;56:e38. doi:10.4081/ejh.2012.e38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Practice Committees of American Society for Reproductive Medicine; Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertil Steril. 2013;99:37–43.

    Article  Google Scholar 

  57. Glujovsky D, Riestra B, Sueldo C, Fiszbajn G, Repping S, Nodar F, et al. Vitrification versus slow freezing for women undergoing oocyte cryopreservation. Cochrane Database Syst Rev. 2014;9:CD010047.

    Google Scholar 

  58. Levi-Setti PE, Borini A, Patrizio P, Bolli S, Vigiliano V, De Luca R, et al. ART results with frozen oocytes: data from the Italian ART registry (2005–2013). J Assist Reprod Genet. 2016;33:123–8.

    Article  PubMed  Google Scholar 

  59. Levi Setti PE, Porcu E, Patrizio P, Vigiliano V, de Luca R, d’Aloja P, et al. Human oocyte cryopreservation with slow freezing versus vitrification. Results from the national Italian registry data, 2007–2011. Fertil Steril. 2014;102:90–95.e2.

    Article  PubMed  Google Scholar 

  60. Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update. 2012;18:536–54.

    Article  PubMed  Google Scholar 

  61. Bianchi V, Lappi M, Bonu MA, Borini A. Oocyte slow freezing using a 0.2-0.3 M sucrose concentration protocol: is it really the time to trash the cryopreservation machine? Fertil Steril. 2012;97:1101–7.

    Article  CAS  PubMed  Google Scholar 

  62. Parmegiani L, Tatone C, Cognigni GE, Bernardi S, Troilo E, Arnone A, et al. Rapid warming increases survival of slow-frozen sibling oocytes: a step towards a single warming procedure irrespective of the freezing protocol? Reprod Biomed Online. 2014;28:614–23.

    Article  PubMed  Google Scholar 

  63. Stachecki JJ, Willadsen SM. Cryopreservation of mouse oocytes using a medium with low sodium content: effect of plunge temperature. Cryobiology. 2000;40:4–12.

    Article  CAS  PubMed  Google Scholar 

  64. Tao T, Del Valle A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet. 2008;25:287–96.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shanshan G, Mei L, Keliang W, Yan S, Rong T, Zi-Jiang C. Effect of different rehydration temperatures on the survival of human vitrified-warmed oocytes. J Assist Reprod Genet. 2015;32:1197–203.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Palmerini MG, Antinori M, Maione M, Cerusico F, Versaci C, Nottola SA, et al. Ultrastructure of immature and mature human oocytes after cryotop vitrification. J Reprod Dev. 2014;60:411–20.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gualtieri R, Mollo V, Barbato V, Fiorentino I, Iaccarino M, Talevi R. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod. 2011;26:2452–60.

    Article  CAS  PubMed  Google Scholar 

  68. Bonetti A, Cervi M, Tomei F, Marchini M, Ortolani F, Manno M. Ultrastructural evaluation of human metaphase II oocytes after vitrification: closed versus open devices. Fertil Steril. 2011;95:928–35.

    Article  PubMed  Google Scholar 

  69. Sathananthan AH, Trounson A, Freeman L. Morphology and fertilizability of frozen human oocytes. Gamete Res. 1987;16:343–54.

    Article  CAS  PubMed  Google Scholar 

  70. Kornmann B. The molecular hug between the ER and the mitochondria. Curr Opin Cell Biol. 2013;25:443–8.

    Article  CAS  PubMed  Google Scholar 

  71. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.

    Article  CAS  PubMed  Google Scholar 

  72. Bang S, Shin H, Song H, Suh CS, Lim HJ. Autophagic activation in vitrified-warmed mouse oocytes. Reproduction. 2014;148:11–9.

    Article  CAS  PubMed  Google Scholar 

  73. Bang S, Lee GK, Shin H, Suh CS, Lim HJ. Vitrification, in vitro fertilization, and development of Atg7 deficient mouse oocytes. Clin Exp Reprod Med. 2016;43:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cheng JP, Lane JD. Organelle dynamics and membrane trafficking in apoptosis and autophagy. Histol Histopathol. 2010;25:1457–72.

    PubMed  Google Scholar 

  75. Shahedi A, Hosseini A, Khalili MA, Norouzian M, Salehi M, Piriaei A, et al. The effect of vitrification on ultrastructure of human in vitro matured germinal vesicle oocytes. Eur J Obstet Gynecol Reprod Biol. 2013;167:69–75.

    Article  PubMed  Google Scholar 

  76. Coticchio G, Dal Canto M, Fadini R, Mignini Renzini M, Guglielmo MC, Miglietta S, et al. Ultrastructure of human oocytes after in vitro maturation. Mol Hum Reprod. 2016;22:110–8.

    Article  PubMed  Google Scholar 

  77. Nikiforaki D, Vanden Meerschaut F, Qian C, De Croo I, Lu Y, Deroo T, et al. Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization. Hum Reprod. 2014;29:29–40.

    Article  CAS  PubMed  Google Scholar 

  78. Larman MG, Katz-Jaffe MG, Sheehan CB, Gardner DK. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod. 2007;22:250–9.

    Article  CAS  PubMed  Google Scholar 

  79. Ragoonanan V, Less R, Aksan A. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Part 2: The link between the state of the membrane-cytoskeleton complex and the cellular damage. Cryobiology. 2013;66:96–104.

    Article  CAS  PubMed  Google Scholar 

  80. Vincent C, Garnier V, Heyman Y, Renard JP. Solvent effects on cytoskeletal organization and in-vivo survival after freezing of rabbit oocytes. J Reprod Fertil. 1989;87:809–20.

    Article  CAS  PubMed  Google Scholar 

  81. Joly C, Bchini O, Boulekbache H, Testart J, Maro B. Effects of 1,2-propanediol on the cytoskeletal organization of the mouse oocyte. Hum Reprod. 1992;7:374–8.

    CAS  PubMed  Google Scholar 

  82. Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983;96:1–27.

    Article  CAS  PubMed  Google Scholar 

  83. Choi JK, Huang H, He X. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary. Cryobiology. 2015;70:269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present study was supported by grants from the National Health Institute, Italian Ministry of Health and the Italian Ministry of Education, University and Research (grants from Sapienza University, Rome and University of L’Aquila, L’Aquila). The Authors wish to acknowledge Mr. Ezio Battaglione of the Laboratory for Electron Microscopy “Pietro M Motta,” Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, Rome, for his contribution to sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Annarita Nottola.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nottola, S.A., Albani, E., Coticchio, G. et al. Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes. J Assist Reprod Genet 33, 1559–1570 (2016). https://doi.org/10.1007/s10815-016-0798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0798-x

Keywords

Navigation