Journal of Assisted Reproduction and Genetics

, Volume 33, Issue 11, pp 1431–1438 | Cite as

The subcortical maternal complex: multiple functions for one biological structure?

  • D. Bebbere
  • L. Masala
  • D. F. Albertini
  • S. Ledda


The subcortical maternal complex (SCMC) is a multiprotein complex uniquely expressed in mammalian oocytes and early embryos, essential for zygote progression beyond the first embryonic cell divisions. Similiar to other factors encoded by maternal effect genes, the physiological role of SCMC remains unclear, although recent evidence has provided important molecular insights into different possible functions. Its potential involvement in human fertility is attracting increasing attention; however, the complete story is far from being told. The present mini review provides an overview of recent findings related to the SCMC and discusses its potential physiological role/s with the aim of inspiring new directions for future research.


OOEP/FLOPED NLRP5/MATER TLE6 KHDC3/FILIA Oocyte Developmental competence 



D. Bebbere is the recipient of an RTD contract at the University of Sassari, Italy, granted by “P.O.R. SARDEGNA F.S.E. 2007–2013 - Obiettivo competitività regionale e occupazione, Asse IV Capitale umano, Linea di Attività l.3.1.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Tarín JJ, García-Pérez MA, Cano A. Assisted reproductive technology results: why are live-birth percentages so low? Mol Reprod Dev. 2014;81:568–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Alazami AM, Awad SM, Coskun S, Al-Hassan S, Hijazi H, Abdulwahab FM, et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015;16:240.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet. 2000;26:267–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet. 2003;33:187–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Dean J. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol. 2002;53:171–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Zheng P, Dean J. Oocyte-specific genes affect folliculogenesis, fertilization, and early development. Semin Reprod Med. 2007;25:243–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang K, Smith GW. Maternal control of early embryogenesis in mammals. Reprod Fertil Dev. 2015;27:880–96.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yu C, Ji SY, Sha QQ, Dang Y, Zhou JJ, Zhang YL, et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat Struct Mol Biol. 2016;23:387–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Li L, Baibakov B, Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell. 2008;15:416–25.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu XJ, Yi Z, Gao Z, Qin D, Zhai Y, Chen X, et al. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics. Nat Commun. 2014;5:4887.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhu K, Yan L, Zhang X, Lu X, Wang T, Yan J, et al. Identification of a human subcortical maternal complex. Mol Hum Reprod. 2015;21:320–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Ohsugi M, Zheng P, Baibakov B, Li L, Dean J. Maternally derived FILIAMATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development. 2008;135:259–69.CrossRefPubMedGoogle Scholar
  14. 14.
    Tashiro F, Kanai-Azuma M, Miyazaki S, Kato M, Tanaka T, Toyoda S, et al. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes Cells. 2010;15:813–28.CrossRefPubMedGoogle Scholar
  15. 15.
    Zheng P, Dean J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc Natl Acad Sci U S A. 2009;106:7473–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Herr JC, Chertihin O, Digilio L, Jha KN, Vemuganti S, Flickinger CJ. Distribution of RNA binding protein MOEP19 in the oocyte cortex and early embryo indicates pre-patterning related to blastomere polarity and trophectoderm specification. Dev Biol. 2008;314:300–16.CrossRefPubMedGoogle Scholar
  17. 17.
    Tong ZB, Gold L, De Pol A, Vanevski K, Dorward H, Sena P, et al. Developmental expression and subcellular localization of mouse MATER, an oocyte specific-protein essential for early development. Endocrinology. 2004;145:1427–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Tong ZB, Nelson LM. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology. 1999;140:3720–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Bebbere D, Ariu F, Bogliolo L, Masala L, Murrone O, Fattorini M, et al. Expression of maternally derived KHDC3, NLRP5, OOEP and TLE6 is associated with oocyte developmental competence in the ovine species. BMC Dev Biol. 2014;14:40.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Adona PR, de Bem TH, Mesquita LG, Rochetti RC, Leal CL. Embryonic development and gene expression in oocytes cultured in vitro in supplemented pre-maturation and maturation media. Reprod Domest Anim. 2011;46:e31–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Romar R, De Santis T, Papillier P, Perreau C, Thélie A, Dell’Aquila ME, et al. Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod Domest Anim. 2011;46:e23–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Pisani LF, Ramelli P, Lazzari B, Braglia S, Ceciliani F, Mariani P. Characterization of maternal antigen that embryos require (MATER/NLRP5) gene and protein in pig somatic tissues and germ cells. J Reprod Dev. 2010;56(1):41–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol. 2010;20:187–95.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zheng P, Baibakov B, Wang XH, Dean J. PtdIns(3,4,5)P3 is constitutively synthesized and required for spindle translocation during meiosis in mouse oocytes. J Cell Sci. 2013;126:715–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006;3:995–1000.CrossRefPubMedGoogle Scholar
  26. 26.
    Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC, et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol. 2003;256:73–88.CrossRefPubMedGoogle Scholar
  27. 27.
    Esposito G, Vitale AM, Leijten FP, Strik AM, Koonen-Reemst AM, Yurttas P, et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol. 2007;273:25–31.CrossRefPubMedGoogle Scholar
  28. 28.
    Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development. 2008;135:2627–36.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Capco DG, Gallicano GI, McGaughey RW, Downing KH, Larabell CA. Cytoskeletal sheets of mammalian eggs and embryos: a lattice-like network of intermediate filaments. Cell Motil Cytoskeleton. 1993;24:85–99.CrossRefPubMedGoogle Scholar
  30. 30.
    Wassarman PM, Josefowicz WJ. Oocyte development in the mouse: an ultrastructural comparison of oocytes isolated at various stages of growth and meiotic competence. J Morphol. 1978;156:209–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Gallicano GI, McGaughey RW, Capco DG. Cytoskeleton of the mouse egg and embryo: reorganization of planar elements. Cell Motil Cytoskeleton. 1991;18:143–54.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim B, Kan R, Anguish L, Nelson LM, Coonrod SA. Potential role for MATER in cytoplasmic lattice formation in murine oocytes. PLoS ONE. 2010;5(9), e12587.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Reid DW, Nicchitta CV. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2015;16:221–31.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kang MK, Han SJ. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep. 2011;44:147–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Clarke HJ. Post-transcriptional control of gene expression during mouse oogenesis. Results Probl Cell Differ. 2012;55:1–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Weill L, Belloc E, Bava FA, Mendez R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol. 2012;19:577–85.CrossRefPubMedGoogle Scholar
  37. 37.
    Sternlicht AL, Schultz RM. Biochemical studies of mammalian oogenesis: kinetics of accumulation of total and poly(A)-containing RNA during growth of the mouse oocyte. J Exp Zool. 1981;215:191–200.CrossRefPubMedGoogle Scholar
  38. 38.
    Pierre A, Gautier M, Callebaut I, Bontoux M, Jeanpierre E, Pontarotti P, et al. Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed KHDC1/DPPA5/ECAT1/OOEP gene family. Genomics. 2007;90:583–94.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang J, Xu M, Zhu K, Li L, Liu X. The N-terminus of FILIA forms an atypical KH domain with a unique extension involved in interaction with RNA. PLoS ONE. 2012;7, e30209.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Susor A, Jansova D, Cerna R, Danylevska A, Anger M, Toralova T, et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun. 2015;6:6078.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Joshi S, Davies H, Sims LP, Levy SE, Dean J. Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev Biol. 2007;7:67.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Park MW, Kim KH, Kim EY, Lee SY, Ko JJ, Lee KA. Associations among Sebox and other MEGs and its effects on early embryogenesis. PLoS ONE. 2015;10(2), e0115050.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Liang L, Soyal SM, Dean J. FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development. 1997;124:4939–47.PubMedGoogle Scholar
  44. 44.
    Fernandes R, Tsuda C, Perumalsamy AL, Naranian T, Chong J, Acton BM, et al. NLRP5 mediates mitochondrial function in mouse oocytes and embryos. Biol Reprod. 2012;86:138,1–10.CrossRefGoogle Scholar
  45. 45.
    Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol. 2007;77:21–49.CrossRefPubMedGoogle Scholar
  46. 46.
    Muggleton-Harris AL, Brown JJ. Cytoplasmic factors influence mitochondrial reorganization and resumption of cleavage during culture of early mouse embryos. Hum Reprod. 1988;3:1020–8.PubMedGoogle Scholar
  47. 47.
    Kabashima K, Matsuzaki M, Suzuki H. Both microtubules and microfilaments mutually control the distribution of mitochondria in two cell embryos of golden hamsters. J Mamm Ova Res. 2007;24:120–5.CrossRefGoogle Scholar
  48. 48.
    Docherty LE, Rezwan FI, Poole RL, Turner CL, Kivuva E, Maher ER, et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun. 2015;6:8086.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Akoury E, Zhang L, Ao A, Slim R. NLRP7andKHDC3L, the two maternal effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159–69.CrossRefPubMedGoogle Scholar
  50. 50.
    Hanna CW, Kelsey G. The specification of imprints in mammals. Heredity. 2014;113:176–83.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 2014;15:517–30.CrossRefPubMedGoogle Scholar
  52. 52.
    Arnaud P, Feil R. Epigenetic deregulation of genomic imprinting in human 21 disorders and following assisted reproduction. Birth Defects Res C Embryo Today. 2005;75:81–97.CrossRefPubMedGoogle Scholar
  53. 53.
    Scarano MI, Strazzullo M, Matarazzo MR, D’Esposito M. DNA methylation 40 years later: its role in human health and disease. J Cell Physiol. 2005;204:21–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.CrossRefPubMedGoogle Scholar
  55. 55.
    El-Maarri O, Seoud M, Coullin P, Herbiniaux U, Oldenburg J, Rouleau G, et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet. 2003;12:1405–13.CrossRefPubMedGoogle Scholar
  56. 56.
    Judson H, Hayward BE, Sheridan E, Bonthron DT. A global disorder of imprinting in the human female germ line. Nature. 2002;416:539–42.CrossRefPubMedGoogle Scholar
  57. 57.
    Parry DA, Logan CV, Hayward BE, Shires M, Landolsi H, Diggle C, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011;89:451–8.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fallahian M, Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Mutations in NLRP7 and KHDC3L confer a complete hydatidiform mole phenotype on digynic triploid conceptions. Hum Mutat. 2013;34:301–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Reddy R, Akoury E, Phuong Nguyen NM, Abdul-Rahman OA, Dery C, Gupta N, et al. Report of four new patients with protein-truncating mutations in C6orf221/ KHDC3L and colocalization with NLRP7. Eur J Hum Genet. 2013;21:957–64.CrossRefPubMedGoogle Scholar
  60. 60.
    Qian J, Cheng Q, Murdoch S, Xu C, Jin F, Chebaro W, et al. The genetics of recurrent hydatidiform moles in China: correlations between NLRP7 mutations, molar genotypes and reproductive outcomes. Mol Hum Reprod. 2011;17:612–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Estrada H, Buentello B, Zenteno JC, Fiszman R, Aguinaga M. The p.L750V mutation in the NLRP7 gene is frequent in Mexican patients with recurrent molar pregnancies and is not associated with recurrent pregnancy loss. Prenat Diagn. 2013;33:205–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, Wagner AF, et al. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod. 2008;14:33–40.CrossRefPubMedGoogle Scholar
  63. 63.
    Hayward BE, De Vos M, Talati N, Abdollahi MR, Taylor GR, Meyer E, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat. 2009;30:E629–39.CrossRefPubMedGoogle Scholar
  64. 64.
    Urrego R, Herrera-Puerta E, Chavarria NA, Camargo O, Wrenzycki C, Rodriguez-Osorio N. Follicular progesterone concentrations and messenger RNA expression of MATER and OCT-4 in immature bovine oocytes as predictors of developmental competence. Theriogenology. 2015;83:1179–87.Google Scholar
  65. 65.
    Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, Arnold GJ, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod. 2016;31(1):133–49Google Scholar
  66. 66.
    Jiao ZX, Woodruff TK. Follicle microenvironment-associated alterations in gene expression in the mouse oocyte and its polar body. Fertil Steril. 2013;99:1453–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, et al. Pre- and postovulatory aging of murine oocytes affect the transcript level and Poly(A) tail length of maternal effect genes. PLoS ONE. 2014;9(10), e108907.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lu Y, He X, Zheng P. Decrease in expression of maternal effect gene Mater is associated with maternal ageing in mice. Mol. Hum. Reprod. 2016;0; 1–9.Google Scholar
  69. 69.
    Sharov AA, Falco G, Piao Y, Poosala S, Becker KG, Zonderman AB, et al. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biol. 2008;6:24.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet. 2004;13:2263–78.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang P, Dixon M, Zucchelli M, Hambiliki F, Levkov L, Hovatta O, et al. Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS ONE. 2008;3, e2755.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Veterinary MedicineUniversity of SassariSassariItaly
  2. 2.The Center for Human ReproductionNew YorkUSA
  3. 3.Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations