Skip to main content

Advertisement

Log in

Crotamine, a cell-penetrating peptide, is able to translocate parthenogenetic and in vitro fertilized bovine embryos but does not improve exogenous DNA expression

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Crotamine is capable of penetrating cells and embryos and transfecting cells with exogenous DNA. However, no studies are available regarding its uptake by parthenogenetic (PA) embryos or its use for transfection in in vitro fertilized (IVF) embryos. This study aimed to determine the translocation kinetics of crotamine into PA and IVF bovine embryos and assess its effect over in vitro development of PA embryos. Moreover, crotamine-DNA complexes were used to test the transfection ability of crotamine in bovine IVF zygotes.

Methods

PA and IVF embryos were exposed to labeled crotamine for four interval times. Embryo toxicity was assayed over PA embryos after 24 h of exposure to crotamine. Additionally, IVF embryos were exposed to or injected with a complex formed by crotamine and pCX-EGFP plasmid.

Results

Confocal images revealed that crotamine was uptaken by PA and IVF embryos as soon as 1 h after exposure. Crotamine exposure did not affect two to eight cells and blastocyst rates or blastocyst cell number (p > 0.05) of PA embryos. Regarding transfection, exposure or injection into the perivitelline space with crotamine-DNA complex did not result in transgene-expressing embryos. Nevertheless, intracytoplasmic injection of plasmid alone showed higher expression rates than did injection with crotamine-DNA complex at days 4 and 7 (p < 0.05).

Conclusions

Crotamine is able to translocate through zona pellucida (ZP) of PA and IVF embryos within 1 h of exposure without impairing in vitro development. However, the use of crotamine does not improve exogenous DNA expression in cattle embryos, probably due to the tight complexation of DNA with crotamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rádis-Baptista G, Kerkis I. Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties. Curr Pharm Des. 2011;17:4351–61.

    Article  PubMed  Google Scholar 

  2. Kerkis A, Kerkis I, Rádis-Baptista G, Oliveira EB, Vianna-Morgante AM, Pereira LV, et al. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. Faseb J. 2004;18:1407–09.

    CAS  PubMed  Google Scholar 

  3. Hayashi MA, Nascimento FD, Kerkis A, Oliveira V, Oliveira EB, Pereira A, et al. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon. 2008;52:508–17.

    Article  CAS  PubMed  Google Scholar 

  4. Campelo IS, Pereira AF, Alcântara-Neto AS, Canel NG, Souza-Fabjan JMG, Teixeira DIA, et al. Effect of crotamine, a cell-penetrating peptide, on blastocyst production and gene expression of in vitro fertilized bovine embryos. Zygote. 2014. doi:10.1017/S0967199414000707.

    PubMed  Google Scholar 

  5. Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984;308:548–50.

    Article  CAS  PubMed  Google Scholar 

  6. Varmuza S, Mann M, Rogers I. Site of action of imprinted genes revealed by phenotypic analysis of parthenogenetic embryos. Dev Genet. 1993;14:239–48.

    Article  CAS  PubMed  Google Scholar 

  7. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science. 1998;280:1256–58.

    Article  CAS  PubMed  Google Scholar 

  8. Perry AC, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, et al. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999;284:1180–83.

    Article  CAS  PubMed  Google Scholar 

  9. Nascimento FD, Hayashi MA, Kerkis A, Oliveira V, Oliveira EB, Rádis-Baptista G, et al. Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J Biol Chem. 2007;282:21349–60.

    Article  CAS  PubMed  Google Scholar 

  10. Murray JD, Nancarrow CD, Marshall JT, Hazelton IG, Ward KA. Production of transgenic merino sheep by microinjection of ovine metallothionein-ovine growth hormone fusion genes. Reprod Fertil Dev. 1989;1:147–55.

    Article  CAS  PubMed  Google Scholar 

  11. Sperandio S, Lulli V, Bacci ML, Forni M, Maidone B, Spadafora C, et al. Sperm-mediated DNA transfer in bovine and swine species. Anim Biotechnol. 1996;7:59–77.

    Article  CAS  Google Scholar 

  12. Gagné MB, Pothier F, Sirard MA. Electroporation of bovine spermatozoa to carry foreign DNA in oocytes. Mol Reprod Dev. 1991;29:6–15.

    Article  PubMed  Google Scholar 

  13. Maurisse R, Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, et al. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol. 2010;10:1–9.

    Article  Google Scholar 

  14. Salamone D, Barañao L, Santos C, Bussmann L, Artuso J, Werning C, et al. High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J Biotechnol. 2006;124:469–72.

    Article  CAS  PubMed  Google Scholar 

  15. Chan AW, Homan EJ, Ballou LU, Burns JC, Bremel RD. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci USA. 1998;95:14028–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poon GM, Gariépy J. Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochem Soc. 2007;35:788–93.

    Article  CAS  Google Scholar 

  17. Alessio AP, Fili AE, Garrels W, Forcato DO, Olmos Nicotra MF, Liaudat AC, et al. Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology. 2016;85:1297–311.

    Article  CAS  PubMed  Google Scholar 

  18. Jeong YH, Kim YJ, Kim EY, Kim SE, Kim J, Park MJ, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination. Zygote. 2015. doi:10.1017/S0967199415000374.

    PubMed  Google Scholar 

  19. Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release. 2006;116:255–64.

    Article  CAS  PubMed  Google Scholar 

  20. Sarko D, Beijer B, Boy RG, Nothelfer E, Leotta K, Eisenhut M, et al. The pharmacokinetics of cell-penetrating peptides. Mol Pharmaceut. 2010;7:2224–31.

    Article  CAS  Google Scholar 

  21. Lönn P, Dowdy SF. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell. Expert Opin Drug Deliv. 2015;12:1627–36.

    Article  PubMed  Google Scholar 

  22. Rodrigues M, Santos A, Torre BG, Rádis-Baptista G, Andreu D, Santos NC. Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochim Biophys Acta. 1818;2012:2707–17.

    Google Scholar 

  23. Rádis-Baptista G, de la Torre BG, Andreu D. A novel cell-penetrating peptide sequence derived by structural minimization of a snake toxin exhibits preferential nucleolar localization. J Med Chem. 2008;51:7041–4.

    Article  PubMed  Google Scholar 

  24. Ikawa M, Kominami K, Yoshimura Y, Tanaka K, Nishimune Y, Okabe M. A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP). FEBS Lett. 1995;375:125–8.

    Article  CAS  PubMed  Google Scholar 

  25. Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod. 1975;12:260–74.

    Article  CAS  PubMed  Google Scholar 

  26. Tervit H, Whittingham D, Rowson L. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30:493–7.

    Article  CAS  PubMed  Google Scholar 

  27. Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52:683–700.

    Article  CAS  PubMed  Google Scholar 

  28. Powell DJ, Galli C, Moor RM. The fate of DNA injected into mammalian oocytes and zygotes at different stages of the cell cycle. J Reprod Fertil. 1992;95:211–20.

    Article  CAS  PubMed  Google Scholar 

  29. Freitas VJF, Alcântara-Neto AS, Pereira AF, Campelo IS, Melo LM, Rádis-Baptista G. Assessing the complex formation between crotamine, a natural cell-penetrating peptide, and DNA using high sensitive fluorescence exclusion assay. Clon Transgen. 2014;3:1–5.

    Google Scholar 

  30. Peng H, Wu Y, Zhang Y. Efficient delivery of DNA and morpholinos into mouse preimplantation embryos by electroporation. Plos One. 2012;7:1–13.

    Article  Google Scholar 

  31. Kaneko T, Sakuma T, Yamamoto T, Mashimo T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci Rep. 2014;6382:1–5.

    Google Scholar 

  32. McKenzie DL, Collard WT, Rice KG. Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. J Pept Res. 1999;54:311–8.

    Article  CAS  PubMed  Google Scholar 

  33. Park CW, Kren BT, Largaespada DA, Steer CJ. DNA methylation of Sleeping Beauty with transposition into the mouse genome. Genes Cells. 2005;10:763–76.

    Article  CAS  PubMed  Google Scholar 

  34. Bevacqua RJ, Pereyra-Bonnet F, Olivera R, Hiriart MI, Sipowicz P, Fernandez-Martín R, et al. Production of IVF transgene-expressing bovine embryos using a novel strategy based on cell cycle inhibitors. Theriogenology. 2012;78:57–68.

    Article  CAS  PubMed  Google Scholar 

  35. Bevacqua RJ, Canel NG, Hiriart MI, Sipowicz P, Rozenblum GT, Vitullo A, et al. Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos. Theriogenology. 2013;80:104–13.

    Article  CAS  PubMed  Google Scholar 

  36. Vichera G, Moro L, Salamone D. Efficient transgene expression in IVF and parthenogenetic bovine embryos by intracytoplasmic injection of DNA–liposome complexes. Reprod Dom Anim. 2011;46:214–20.

    Article  CAS  Google Scholar 

  37. Vichera G, Moro L, Buemo C, Salamone D. DNA fragmentation, transgene expression and embryo development after intracytoplasmic injection of DNA–liposome complexes in IVF bovine zygotes. Zygote. 2014;22:195–203.

    Article  CAS  PubMed  Google Scholar 

  38. Pereyra-Bonnet F, Bevacqua R, La Rosa I, Sipowicz P, Radrizzani M, Fernandez-Martin R, et al. Novel methods to induce exogenous gene expression in SCNT, parthenogenic and IVF preimplantation bovine embryos. Transgenic Res. 2011;20:1379–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CIALE for donating the semen and Frigorífico I.F.F.S.A for providing the biological material. The authors are also thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for providing the scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Salamone.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Capsule

Crotamine is able to translocate through zona pellucida of PA and IVF embryos, but did not improve the efficiency of transgene expression in cattle embryo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Confocal imaging projections of PA embryos exposed to RhoB-crotamine for 17 h time interval (MP4 1087 kb)

Confocal imaging projections of IVF embryos exposed to RhoB-crotamine for 17 h time interval (MP4 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campelo, I.S., Canel, N.G., Bevacqua, R.J. et al. Crotamine, a cell-penetrating peptide, is able to translocate parthenogenetic and in vitro fertilized bovine embryos but does not improve exogenous DNA expression. J Assist Reprod Genet 33, 1405–1413 (2016). https://doi.org/10.1007/s10815-016-0772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0772-7

Keywords

Navigation