Skip to main content
Log in

Recent advances in preimplantation genetic diagnosis and screening

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Preimplantation genetic diagnosis/screening (PGD/PGS) aims to help couples lower the risks of transmitting genetic defects to their offspring, implantation failure, and/or miscarriage during in vitro fertilization (IVF) cycles. However, it is still being debated with regard to the practicality and diagnostic accuracy of PGD/PGS due to the concern of invasive biopsy and the potential mosaicism of embryos. Recently, several non-invasive and high-throughput assays have been developed to help overcome the challenges encountered in the conventional invasive biopsy and low-throughput analysis in PGD/PGS. In this mini-review, we will summarize the recent progresses of these new methods for PGD/PGS and discuss their potential applications in IVF clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harper JC. Preimplantation genetic diagnosis. 2nd ed. Cambridge: Cambridge University Press. viii; 2009. p. 294 p.

    Book  Google Scholar 

  2. Simpson JL. Preimplantation genetic diagnosis at 20 years. Prenat Diagn. 2010;30(7):682–95.

    Article  PubMed  Google Scholar 

  3. Handyside AH et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.

    Article  CAS  PubMed  Google Scholar 

  4. Dahdouh EM, Balayla J, Garcia-Velasco JA. Impact of blastocyst biopsy and comprehensive chromosome screening technology on preimplantation genetic screening: a systematic review of randomized controlled trials. Reprod Biomed Online. 2015;30(3):281–9.

    Article  PubMed  Google Scholar 

  5. Harton GL et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  6. Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. BMJ. 2015;350:g7611.

    Article  PubMed  Google Scholar 

  7. Munne S et al. Chromosome mosaicism in human embryos. Biol Reprod. 1994;51(3):373–9.

    Article  CAS  PubMed  Google Scholar 

  8. Novik V et al. The accuracy of chromosomal microarray testing for identification of embryonic mosaicism in human blastocysts. Mol Cytogenet. 2014;7(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schoolcraft WB et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94(5):1700–6.

    Article  PubMed  Google Scholar 

  10. Greco E et al. Successful implantation and live birth of a healthy boy after triple biopsy and double vitrification of oocyte-embryo-blastocyst. Springerplus. 2015;4:22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Palini S et al. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26(6):603–10.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen J, Grudzinskas G, Johnson MH. Embryonic DNA sampling without biopsy: the beginnings of non-invasive PGD? Reprod Biomed Online. 2013;26(6):520–1.

    Article  CAS  PubMed  Google Scholar 

  13. Gianaroli L et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102(6):1692–9. e6.

    Article  CAS  PubMed  Google Scholar 

  14. Tobler KJ et al. The potential use of blastocoel fluid (BF) from expanded blastocysts as a less invasive form of embryo biopsy for preimplantation genetic testing. Fertil Steril. 2014;102(3):e183–4.

    Article  Google Scholar 

  15. Assou S et al. Non-invasive pre-implantation genetic diagnosis of X-linked disorders. Med Hypotheses. 2014;83(4):506–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wu H et al. Medium-based noninvasive preimplantation genetic diagnosis for human alpha-thalassemias-SEA. Medicine (Baltimore). 2015;94(12):e669.

    Article  CAS  Google Scholar 

  17. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  18. Meseguer M et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.

    Article  PubMed  Google Scholar 

  19. Chawla M et al. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet. 2015;32(1):69–75.

    Article  PubMed  Google Scholar 

  20. Storr A et al. Morphokinetic parameters using time-lapse technology and day 5 embryo quality: a prospective cohort study. J Assist Reprod Genet. 2015;32(7):1151–60.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swain JE. Could time-lapse embryo imaging reduce the need for biopsy and PGS? J Assist Reprod Genet. 2013;30(8):1081–90.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Friedman BE et al. Non-invasive imaging for the detection of human embryonic aneuploidy at the blastocyst stage. Fertil Steril. 2012;98(3, Supplement):S38.

    Article  Google Scholar 

  23. Ottolini C, Rienzi L, Capalbo A. A cautionary note against embryo aneuploidy risk assessment using time-lapse imaging. Reprod Biomed Online. 2014;28(3):273–5.

    Article  PubMed  Google Scholar 

  24. Rienzi L et al. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study. Reprod Biomed Online. 2015;30(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  25. Dreesen J et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study. Eur J Hum Genet. 2014;22(8):1012–8.

    Article  CAS  PubMed  Google Scholar 

  26. Muggleton-Harris AL et al. Genetic diagnosis using polymerase chain reaction and fluorescent in-situ hybridization analysis of biopsied cells from both the cleavage and blastocyst stages of individual cultured human preimplantation embryos. Hum Reprod. 1995;10(1):183–92.

    Article  CAS  PubMed  Google Scholar 

  27. Findlay I et al. Fluorescent PCR: a new technique for PGD of sex and single-gene defects. J Assist Reprod Genet. 1996;13(2):96–103.

    Article  CAS  PubMed  Google Scholar 

  28. Fiorentino F et al. Polymerase chain reaction-based detection of chromosomal imbalances on embryos: the evolution of preimplantation genetic diagnosis for chromosomal translocations. Fertil Steril. 2010;94(6):2001–U117.

    Article  CAS  PubMed  Google Scholar 

  29. Sallevelt SCEH et al. Preimplantation genetic diagnosis in mitochondrial DNA disorders: challenge and success. J Med Genet. 2013;50(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  30. Griffin DK et al. Fluorescent in-situ hybridization to interphase nuclei of human preimplantation embryos with X and Y chromosome specific probes. Hum Reprod. 1991;6(1):101–5.

    CAS  PubMed  Google Scholar 

  31. Munne S et al. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8(12):2185–91.

    CAS  PubMed  Google Scholar 

  32. Grifo JA et al. Pregnancy after embryo biopsy and coamplification of DNA from X and Y chromosomes. JAMA. 1992;268(6):727–9.

    Article  CAS  PubMed  Google Scholar 

  33. Grifo JA et al. Preimplantation genetic diagnosis. In situ hybridization as a tool for analysis. Arch Pathol Lab Med. 1992;116(4):393–7.

    CAS  PubMed  Google Scholar 

  34. Munne S et al. Spontaneous abortions are reduced after preconception diagnosis of translocations. J Assist Reprod Genet. 1998;15(5):290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munne S et al. First pregnancies after preconception diagnosis of translocations of maternal origin. Fertil Steril. 1998;69(4):675–81.

    Article  CAS  PubMed  Google Scholar 

  36. Conn CM et al. Infertile couples with Robertsonian translocations: preimplantation genetic analysis of embryos reveals chaotic cleavage divisions. Hum Genet. 1998;102(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  37. Keltz MD et al. Preimplantation genetic screening (PGS) with comparative genomic hybridization (CGH) following day 3 single cell blastomere biopsy markedly improves IVF outcomes while lowering multiple pregnancies and miscarriages. J Assist Reprod Genet. 2013;30(10):1333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Treff NR et al. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses. Mol Hum Reprod. 2011;17(6):335–43.

    Article  CAS  PubMed  Google Scholar 

  39. Forman EJ et al. Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer. Fertil Steril. 2013;100(3):718–24.

    Article  PubMed  Google Scholar 

  40. Treff NR, Scott Jr RT. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy. Fertil Steril. 2013;99(4):1049–53.

    Article  CAS  PubMed  Google Scholar 

  41. Scott Jr RT et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697–703.

    Article  PubMed  Google Scholar 

  42. Treff NR et al. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012;97(4):819–24.

    Article  CAS  PubMed  Google Scholar 

  43. Brezina PR, Kearns WG. The evolving role of genetics in reproductive medicine. Obstet Gynecol Clin North Am. 2014;41(1):41–55.

    Article  PubMed  Google Scholar 

  44. Solinas-Toldo S et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20(4):399–407.

    Article  CAS  PubMed  Google Scholar 

  45. Pinkel D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11.

    Article  CAS  PubMed  Google Scholar 

  46. Hellani A et al. Successful pregnancies after application of array-comparative genomic hybridization in PGS-aneuploidy screening. Reprod Biomed Online. 2008;17(6):841–7.

    Article  CAS  PubMed  Google Scholar 

  47. Ramos L et al. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers. PLoS One. 2014;9(11):e113223.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fiorentino F et al. PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization. Hum Reprod. 2011;26(7):1925–35.

    Article  CAS  PubMed  Google Scholar 

  49. Capalbo A et al. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum Reprod. 2013;28(8):2298–307.

    Article  CAS  PubMed  Google Scholar 

  50. Nayot D et al. Live birth following serial vitrification of embryos and PGD for fragile X syndrome in a patient with the premutation and decreased ovarian reserve. J Assist Reprod Genet. 2013;30(11):1439–44.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fragouli E et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011;26(2):480–90.

    Article  CAS  PubMed  Google Scholar 

  52. Tobler KJ et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25.

  53. Fragouli E et al. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol Hum Reprod. 2014;20(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  54. Capalbo A et al. Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development. Hum Reprod. 2013;28(2):509–18.

    Article  CAS  PubMed  Google Scholar 

  55. Fishel S et al. Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy-the future of IVF? Fertil Steril. 2010;93(3):1006 e7–1006 e10.

    Article  PubMed  Google Scholar 

  56. Tobler KJ et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25.

    Article  CAS  PubMed  Google Scholar 

  57. Alfarawati S et al. First births after preimplantation genetic diagnosis of structural chromosome abnormalities using comparative genomic hybridization and microarray analysis. Hum Reprod. 2011;26(6):1560–74.

    Article  CAS  PubMed  Google Scholar 

  58. Treff, N.R., et al., Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril, 2011. 95(5): p. 1606–12 e1-2.

  59. Brezina, P.R., et al., Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome. Fertil Steril, 2011. 95(5): p. 1786 e5-8.

  60. Tobler KJ et al. Two different microarray technologies for preimplantation genetic diagnosis and screening, due to reciprocal translocation imbalances, demonstrate equivalent euploidy and clinical pregnancy rates. J Assist Reprod Genet. 2014;31(7):843–50.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Treff NR et al. Use of single nucleotide polymorphism microarrays to distinguish between balanced and normal chromosomes in embryos from a translocation carrier. Fertil Steril. 2011;96(1):e58–65.

    Article  PubMed  Google Scholar 

  62. Li G et al. Increased IVF pregnancy rates after microarray preimplantation genetic diagnosis due to parental translocations. Syst Biol Reprod Med. 2014;60(2):119–24.

    Article  PubMed  Google Scholar 

  63. Handyside AH et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47(10):651–8.

    Article  PubMed  Google Scholar 

  64. Konstantinidis M et al. Live births following karyomapping of human blastocysts: experience from clinical application of the method. Reprod Biomed Online. 2015;31(3):394–403.

    Article  PubMed  Google Scholar 

  65. Thornhill AR et al. Karyomapping—a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet. 2015;32(3):347–56.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Natesan SA et al. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online. 2014;29(5):600–5.

    Article  PubMed  Google Scholar 

  67. Gimenez, C., et al., Karyomapping allows preimplantation genetic diagnosis of a de-novo deletion undetectable using conventional PGD technology. Reprod Biomed Online, 2015.

  68. Zheng H et al. Application of next-generation sequencing for 24-chromosome aneuploidy screening of human preimplantation embryos. Mol Cytogenet. 2015;8:38.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fiorentino F et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802–13.

    Article  PubMed  Google Scholar 

  70. Fiorentino F et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril. 2014;101(5):1375–82.

    Article  CAS  PubMed  Google Scholar 

  71. Tan Y et al. Clinical outcome of preimplantation genetic diagnosis and screening using next generation sequencing. Gigascience. 2014;3(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lukaszuk K et al. Healthy baby born to a Robertsonian translocation carrier following next-generation sequencing-based preimplantation genetic diagnosis: a case report. AJP Rep. 2015;5(2):e172–5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yin X et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88(3):69.

    Article  PubMed  Google Scholar 

  74. Lukaszuk K et al. Routine use of next-generation sequencing for preimplantation genetic diagnosis of blastomeres obtained from embryos on day 3 in fresh in vitro fertilization cycles. Fertil Steril. 2015;103(4):1031–6.

    Article  PubMed  Google Scholar 

  75. Hou Y et al. Genome analyses of single human oocytes. Cell. 2013;155(7):1492–506.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang L et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A. 1992;89(13):5847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Telenius HK et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25.

    Article  CAS  PubMed  Google Scholar 

  78. Dean FB et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002;99(8):5261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zong C et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lu SJ et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338(6114):1627–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang L et al. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet. 2015;16:79–102.

    Article  CAS  PubMed  Google Scholar 

  82. Huang J et al. Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos. Fertil Steril. 2014;102(6):1685–91.

    Article  CAS  PubMed  Google Scholar 

  83. Shi J et al. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development. 2015;142(20):3468–77.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, C.-Z., et al., Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat Commun, 2015. 6.

  85. Tang F et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  86. Yan L et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20(9):1131–9.

    Article  CAS  PubMed  Google Scholar 

  87. Blakeley P et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142(18):3151–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xue Z et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dey SS et al. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33(3):285–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Macaulay IC et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12(6):519–22.

    Article  CAS  PubMed  Google Scholar 

  91. Yan L et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci U S A. 2015;112(52):15964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Fan.

Additional information

Capsule

PGD/PGS has become a routine clinical procedure in many IVF clinics worldwide. New techniques have been quickly adopted as embryo selection strategies in hopes of improving live birth outcomes in human ARTs.

Lina Lu and Bo Lv contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Lv, B., Huang, K. et al. Recent advances in preimplantation genetic diagnosis and screening. J Assist Reprod Genet 33, 1129–1134 (2016). https://doi.org/10.1007/s10815-016-0750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0750-0

Keywords

Navigation