Journal of Assisted Reproduction and Genetics

, Volume 33, Issue 9, pp 1129–1134 | Cite as

Recent advances in preimplantation genetic diagnosis and screening

  • Lina Lu
  • Bo Lv
  • Kevin Huang
  • Zhigang Xue
  • Xianmin Zhu
  • Guoping FanEmail author


Preimplantation genetic diagnosis/screening (PGD/PGS) aims to help couples lower the risks of transmitting genetic defects to their offspring, implantation failure, and/or miscarriage during in vitro fertilization (IVF) cycles. However, it is still being debated with regard to the practicality and diagnostic accuracy of PGD/PGS due to the concern of invasive biopsy and the potential mosaicism of embryos. Recently, several non-invasive and high-throughput assays have been developed to help overcome the challenges encountered in the conventional invasive biopsy and low-throughput analysis in PGD/PGS. In this mini-review, we will summarize the recent progresses of these new methods for PGD/PGS and discuss their potential applications in IVF clinics.


Preimplantation genetic diagnosis (PGD) Preimplantation genetic screening (PGS) In vitro fertilization (IVF) Embryo biopsy Non-invasive testing 


  1. 1.
    Harper JC. Preimplantation genetic diagnosis. 2nd ed. Cambridge: Cambridge University Press. viii; 2009. p. 294 p.CrossRefGoogle Scholar
  2. 2.
    Simpson JL. Preimplantation genetic diagnosis at 20 years. Prenat Diagn. 2010;30(7):682–95.PubMedCrossRefGoogle Scholar
  3. 3.
    Handyside AH et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Dahdouh EM, Balayla J, Garcia-Velasco JA. Impact of blastocyst biopsy and comprehensive chromosome screening technology on preimplantation genetic screening: a systematic review of randomized controlled trials. Reprod Biomed Online. 2015;30(3):281–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Harton GL et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26(1):33–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. BMJ. 2015;350:g7611.PubMedCrossRefGoogle Scholar
  7. 7.
    Munne S et al. Chromosome mosaicism in human embryos. Biol Reprod. 1994;51(3):373–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Novik V et al. The accuracy of chromosomal microarray testing for identification of embryonic mosaicism in human blastocysts. Mol Cytogenet. 2014;7(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Schoolcraft WB et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94(5):1700–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Greco E et al. Successful implantation and live birth of a healthy boy after triple biopsy and double vitrification of oocyte-embryo-blastocyst. Springerplus. 2015;4:22.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Palini S et al. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26(6):603–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen J, Grudzinskas G, Johnson MH. Embryonic DNA sampling without biopsy: the beginnings of non-invasive PGD? Reprod Biomed Online. 2013;26(6):520–1.PubMedCrossRefGoogle Scholar
  13. 13.
    Gianaroli L et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102(6):1692–9. e6.PubMedCrossRefGoogle Scholar
  14. 14.
    Tobler KJ et al. The potential use of blastocoel fluid (BF) from expanded blastocysts as a less invasive form of embryo biopsy for preimplantation genetic testing. Fertil Steril. 2014;102(3):e183–4.CrossRefGoogle Scholar
  15. 15.
    Assou S et al. Non-invasive pre-implantation genetic diagnosis of X-linked disorders. Med Hypotheses. 2014;83(4):506–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu H et al. Medium-based noninvasive preimplantation genetic diagnosis for human alpha-thalassemias-SEA. Medicine (Baltimore). 2015;94(12):e669.CrossRefGoogle Scholar
  17. 17.
    Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Meseguer M et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Chawla M et al. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet. 2015;32(1):69–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Storr A et al. Morphokinetic parameters using time-lapse technology and day 5 embryo quality: a prospective cohort study. J Assist Reprod Genet. 2015;32(7):1151–60.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Swain JE. Could time-lapse embryo imaging reduce the need for biopsy and PGS? J Assist Reprod Genet. 2013;30(8):1081–90.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Friedman BE et al. Non-invasive imaging for the detection of human embryonic aneuploidy at the blastocyst stage. Fertil Steril. 2012;98(3, Supplement):S38.CrossRefGoogle Scholar
  23. 23.
    Ottolini C, Rienzi L, Capalbo A. A cautionary note against embryo aneuploidy risk assessment using time-lapse imaging. Reprod Biomed Online. 2014;28(3):273–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Rienzi L et al. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study. Reprod Biomed Online. 2015;30(1):57–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Dreesen J et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study. Eur J Hum Genet. 2014;22(8):1012–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Muggleton-Harris AL et al. Genetic diagnosis using polymerase chain reaction and fluorescent in-situ hybridization analysis of biopsied cells from both the cleavage and blastocyst stages of individual cultured human preimplantation embryos. Hum Reprod. 1995;10(1):183–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Findlay I et al. Fluorescent PCR: a new technique for PGD of sex and single-gene defects. J Assist Reprod Genet. 1996;13(2):96–103.PubMedCrossRefGoogle Scholar
  28. 28.
    Fiorentino F et al. Polymerase chain reaction-based detection of chromosomal imbalances on embryos: the evolution of preimplantation genetic diagnosis for chromosomal translocations. Fertil Steril. 2010;94(6):2001–U117.PubMedCrossRefGoogle Scholar
  29. 29.
    Sallevelt SCEH et al. Preimplantation genetic diagnosis in mitochondrial DNA disorders: challenge and success. J Med Genet. 2013;50(2):125–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Griffin DK et al. Fluorescent in-situ hybridization to interphase nuclei of human preimplantation embryos with X and Y chromosome specific probes. Hum Reprod. 1991;6(1):101–5.PubMedGoogle Scholar
  31. 31.
    Munne S et al. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8(12):2185–91.PubMedGoogle Scholar
  32. 32.
    Grifo JA et al. Pregnancy after embryo biopsy and coamplification of DNA from X and Y chromosomes. JAMA. 1992;268(6):727–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Grifo JA et al. Preimplantation genetic diagnosis. In situ hybridization as a tool for analysis. Arch Pathol Lab Med. 1992;116(4):393–7.PubMedGoogle Scholar
  34. 34.
    Munne S et al. Spontaneous abortions are reduced after preconception diagnosis of translocations. J Assist Reprod Genet. 1998;15(5):290–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Munne S et al. First pregnancies after preconception diagnosis of translocations of maternal origin. Fertil Steril. 1998;69(4):675–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Conn CM et al. Infertile couples with Robertsonian translocations: preimplantation genetic analysis of embryos reveals chaotic cleavage divisions. Hum Genet. 1998;102(1):117–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Keltz MD et al. Preimplantation genetic screening (PGS) with comparative genomic hybridization (CGH) following day 3 single cell blastomere biopsy markedly improves IVF outcomes while lowering multiple pregnancies and miscarriages. J Assist Reprod Genet. 2013;30(10):1333–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Treff NR et al. Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses. Mol Hum Reprod. 2011;17(6):335–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Forman EJ et al. Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer. Fertil Steril. 2013;100(3):718–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Treff NR, Scott Jr RT. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy. Fertil Steril. 2013;99(4):1049–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Scott Jr RT et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697–703.PubMedCrossRefGoogle Scholar
  42. 42.
    Treff NR et al. Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril. 2012;97(4):819–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Brezina PR, Kearns WG. The evolving role of genetics in reproductive medicine. Obstet Gynecol Clin North Am. 2014;41(1):41–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Solinas-Toldo S et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997;20(4):399–407.PubMedCrossRefGoogle Scholar
  45. 45.
    Pinkel D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11.PubMedCrossRefGoogle Scholar
  46. 46.
    Hellani A et al. Successful pregnancies after application of array-comparative genomic hybridization in PGS-aneuploidy screening. Reprod Biomed Online. 2008;17(6):841–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Ramos L et al. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers. PLoS One. 2014;9(11):e113223.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fiorentino F et al. PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization. Hum Reprod. 2011;26(7):1925–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Capalbo A et al. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum Reprod. 2013;28(8):2298–307.PubMedCrossRefGoogle Scholar
  50. 50.
    Nayot D et al. Live birth following serial vitrification of embryos and PGD for fragile X syndrome in a patient with the premutation and decreased ovarian reserve. J Assist Reprod Genet. 2013;30(11):1439–44.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Fragouli E et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011;26(2):480–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Tobler KJ et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25.Google Scholar
  53. 53.
    Fragouli E et al. Morphological and cytogenetic assessment of cleavage and blastocyst stage embryos. Mol Hum Reprod. 2014;20(2):117–26.PubMedCrossRefGoogle Scholar
  54. 54.
    Capalbo A et al. Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development. Hum Reprod. 2013;28(2):509–18.PubMedCrossRefGoogle Scholar
  55. 55.
    Fishel S et al. Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy-the future of IVF? Fertil Steril. 2010;93(3):1006 e7–1006 e10.PubMedCrossRefGoogle Scholar
  56. 56.
    Tobler KJ et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Alfarawati S et al. First births after preimplantation genetic diagnosis of structural chromosome abnormalities using comparative genomic hybridization and microarray analysis. Hum Reprod. 2011;26(6):1560–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Treff, N.R., et al., Single nucleotide polymorphism microarray-based concurrent screening of 24-chromosome aneuploidy and unbalanced translocations in preimplantation human embryos. Fertil Steril, 2011. 95(5): p. 1606–12 e1-2.Google Scholar
  59. 59.
    Brezina, P.R., et al., Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome. Fertil Steril, 2011. 95(5): p. 1786 e5-8.Google Scholar
  60. 60.
    Tobler KJ et al. Two different microarray technologies for preimplantation genetic diagnosis and screening, due to reciprocal translocation imbalances, demonstrate equivalent euploidy and clinical pregnancy rates. J Assist Reprod Genet. 2014;31(7):843–50.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Treff NR et al. Use of single nucleotide polymorphism microarrays to distinguish between balanced and normal chromosomes in embryos from a translocation carrier. Fertil Steril. 2011;96(1):e58–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Li G et al. Increased IVF pregnancy rates after microarray preimplantation genetic diagnosis due to parental translocations. Syst Biol Reprod Med. 2014;60(2):119–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Handyside AH et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47(10):651–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Konstantinidis M et al. Live births following karyomapping of human blastocysts: experience from clinical application of the method. Reprod Biomed Online. 2015;31(3):394–403.PubMedCrossRefGoogle Scholar
  65. 65.
    Thornhill AR et al. Karyomapping—a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet. 2015;32(3):347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Natesan SA et al. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online. 2014;29(5):600–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Gimenez, C., et al., Karyomapping allows preimplantation genetic diagnosis of a de-novo deletion undetectable using conventional PGD technology. Reprod Biomed Online, 2015.Google Scholar
  68. 68.
    Zheng H et al. Application of next-generation sequencing for 24-chromosome aneuploidy screening of human preimplantation embryos. Mol Cytogenet. 2015;8:38.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fiorentino F et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Fiorentino F et al. Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril. 2014;101(5):1375–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Tan Y et al. Clinical outcome of preimplantation genetic diagnosis and screening using next generation sequencing. Gigascience. 2014;3(1):30.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Lukaszuk K et al. Healthy baby born to a Robertsonian translocation carrier following next-generation sequencing-based preimplantation genetic diagnosis: a case report. AJP Rep. 2015;5(2):e172–5.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yin X et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88(3):69.PubMedCrossRefGoogle Scholar
  74. 74.
    Lukaszuk K et al. Routine use of next-generation sequencing for preimplantation genetic diagnosis of blastomeres obtained from embryos on day 3 in fresh in vitro fertilization cycles. Fertil Steril. 2015;103(4):1031–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Hou Y et al. Genome analyses of single human oocytes. Cell. 2013;155(7):1492–506.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang L et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A. 1992;89(13):5847–51.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Telenius HK et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25.PubMedCrossRefGoogle Scholar
  78. 78.
    Dean FB et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002;99(8):5261–6.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zong C et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lu SJ et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338(6114):1627–30.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Huang L et al. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet. 2015;16:79–102.PubMedCrossRefGoogle Scholar
  82. 82.
    Huang J et al. Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos. Fertil Steril. 2014;102(6):1685–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Shi J et al. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development. 2015;142(20):3468–77.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang, C.-Z., et al., Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat Commun, 2015. 6.Google Scholar
  85. 85.
    Tang F et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.PubMedCrossRefGoogle Scholar
  86. 86.
    Yan L et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20(9):1131–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Blakeley P et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142(18):3151–65.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Xue Z et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593–7.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Dey SS et al. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33(3):285–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Macaulay IC et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12(6):519–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Yan L et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci U S A. 2015;112(52):15964–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lina Lu
    • 1
    • 2
  • Bo Lv
    • 1
  • Kevin Huang
    • 3
  • Zhigang Xue
    • 1
  • Xianmin Zhu
    • 2
  • Guoping Fan
    • 2
    • 3
    Email author
  1. 1.Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
  2. 2.School of Life Sciences and Technology, Advanced Institute of Translational MedicineTongji UniversityShanghaiChina
  3. 3.Department of Human Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations