Journal of Assisted Reproduction and Genetics

, Volume 33, Issue 8, pp 1105–1113 | Cite as

Epigenetic alterations of CYP19A1 gene in Cumulus cells and its relevance to infertility in endometriosis

  • Elham Hosseini
  • Fereshteh Mehraein
  • Maryam Shahhoseini
  • Leili Karimian
  • Fatemeh Nikmard
  • Mahnaz Ashrafi
  • Parvaneh Afsharian
  • Reza Aflatoonian



The purpose of the present study was to investigate the epigenetic mechanisms responsible for the aberrant aromatase expression (CYP19A1) in Cumulus Cells (CCs) of infertile endometriosis patients.


Cumulus cells were obtained from 24 infertile patients with and without endometriosis who underwent ovarian stimulation for intracytoplasmic sperm injection. Expression of CYP19A1 gene was quantified using Reverse Transcription Q-PCR. DNA methylation, histone modifications, and binding of Estrogen Receptor, ERβ to regulatory DNA sequences of CYP19A1 gene were evaluated by Chromatin ImmunoPrecipitation (ChIP) assay.


CYP19A1 gene expression in CCs of endometriosis patients was significantly lower than the control group (P = 0.04). Higher incorporation of MeCP2 (as a marker of DNA methylation) on PII and PI.4 promoters, and hypoacetylation at H3K9 in PII and hypermethylation at H3K9 in PI.4 were observed in CYP19A1 gene in endometriosis patients (P < 0.05). Moreover, a decreased level of ERβ binding to PII and an increased level of its binding to PI.3 and PI.4 promoters of CYP19A1 were observed in endometriosis patients when compared to control.


Significant reduction of CYP19A1 gene expression in CCs of endometriosis patients may be the result of epigenetic alterations in its regulatory regions, either by DNA methylation or histone modifications. These epigenetic changes along with differential binding of ERβ (as a transcription factor) in CYP19A1 promoters may impair follicular steroidogenesis, leading to poor Oocyte and embryo condition in endometriosis patients.


Endometriosis Epigenetic CYP19A1 Cumulus cell Estrogen receptor beta 



The authors thank all the patients that consented to participate in this study and the embryologists at Royan institute, Tehran, Iran., especially Dr. Bahar Movaghar and Dr. Poopak Eftekhari Yazdi, for their help with patient recruitment and associated embryology. Further, the authors would like to acknowledge Mrs. Raha Favaedi, Miss Samaneh Aghajanpour, and Mrs. Neda Soltani for their skilful technical assistance.

Compliance with ethical standards

This cross-sectional study was approved by the Ethics Committees of Iran University of Medical Sciences (IUMS, no: 23108-April 2014) and the Royan Institute. Also, written informed consent was obtained from all case and control subjects prior to the oocyte retrieval.

Conflict of interest

There is no conflict of interest in this study.


This research was supported by the Vice Chancellor of Research at Iran University of Medical Sciences and Royan institute, Tehran, Iran.


  1. 1.
    Kennedy S, Bergqvist A, Chapron C, D’Hooghe T, Dunselman G, Greb R, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20(10):2698–704.CrossRefPubMedGoogle Scholar
  2. 2.
    Dunselman G, Vermeulen N, Becker C, Calhaz-Jorge C, D’Hooghe T, De Bie B, et al. ESHRE guideline: management of women with endometriosis. Hum Reprod. 2014;29(3):400–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Gupta S, Goldberg JM, Aziz N, Goldberg E, Krajcir N, Agarwal A. Pathogenic mechanisms in endometriosis-associated infertility. Fertil Steril. 2008;90(2):247–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Garrido Ns, Navarro J, Remohí J, SimÃ3n C, Pellicer A. Follicular hormonal environment and embryo quality in women with endometriosis. Human reproduction update 2000;6(1):67-74.Google Scholar
  5. 5.
    Hsu AL, Townsend PM, Oehninger S, Castora FJ. Endometriosis may be associated with mitochondrial dysfunction in cumulus cells from subjects undergoing in vitro fertilization-intracytoplasmic sperm injection, as reflected by decreased adenosine triphosphate production. Fertil Stril. 2015;103(2):347–52. e1.CrossRefGoogle Scholar
  6. 6.
    Wang J, Shen X, Huang X, Zhao Z. Follicular fluid levels of prostaglandin E2 and the effect of prostaglandin E2 on steroidogenesis in granulosa-lutein cells in women with moderate and severe endometriosis undergoing in vitro fertilization and embryo transfer. Chin Med J. 2012;125(22):3985–90.PubMedGoogle Scholar
  7. 7.
    Lessey BA, Young SL. Pathophysiology of infertility in endometriosis. Endometriosis: Science and Practice 2012:240-54. doi: 10.1002/9781444398519.Ch23.
  8. 8.
    Pellicer A, Oliveira N, Ruiz A, Remohí J, Simón C. Exploring the mechanism(s) of endometriosis-related infertility: an analysis of embryo development and implantation in assisted reproduction. Hum Reprod. 1995;10 suppl 2:91–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Albertini DF, Combelles C, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16(10):715–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Egea RR, Puchalt NG, Escrivá MM, Varghese AC. OMICS: current and future perspectives in reproductive medicine and technology. J Hum Reprod Sci. 2014;7(2):73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, et al. Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online. 2007;14(2):175–83.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hamel M, Dufort I, Robert C, Gravel C, Leveille M-C, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23(5):1118–27.CrossRefPubMedGoogle Scholar
  14. 14.
    Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22(12):3069–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Lucidi P, BernabÃ2 N, Turriani M, Barboni B, Mattioli M. Cumulus cells steroidogenesis is influenced by the degree of oocyte maturation. Reprod Biol Endocrinol 2003;1:45.Google Scholar
  16. 16.
    Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci. 1998;95(12):6965–70.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors α and β in the human reproductive organs. J Clin Endocrinol Metab. 2000;85(12):4835–40.PubMedGoogle Scholar
  18. 18.
    Marino M, Galluzzo P, Ascenzi P. Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics. 2006;7(8):497.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhuang L-Z, Adashi EY, Hsueh AJ. Direct enhancement of gonadotropin-stimulated ovarian estrogen biosynthesis by estrogen and clomiphene citrate. Endocrinology. 1982;110(6):2219–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Katz-Jaffe MG, Surrey ES, Minjarez DA, Gustofson RL, Stevens JM, Schoolcraft WB. Association of abnormal ovarian reserve parameters with a higher incidence of aneuploid blastocysts. Obstet Gynecol. 2013;121(1):71–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Conley A, Mapes S, Corbin C, Greger D, Walters K, Trant J, et al. A comparative approach to structure-function studies of mammalian aromatases. J Steroid Biochem Mol Biol. 2001;79(1):289–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Sebastian S, Bulun SE. A highly complex organization of the regulatory region of the human CYP19 (aromatase) gene revealed by the human genome project. J Clin Endocrinol Metab. 2001;86(10):4600–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, et al. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57(3):359–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994;15(3):342–55.PubMedGoogle Scholar
  25. 25.
    Giudice LC, Kao LC. Endometriosis. Lancet. 2015;364(9447):1789–99.CrossRefGoogle Scholar
  26. 26.
    Barcelos IDE, Donabella FC, Ribas CP, Meola J, Ferriani RA, de Paz CCP, et al. Down-regulation of the CYP19A1 gene in cumulus cells of infertile women with endometriosis. RBM Online. 2015;30(5):532–41.PubMedGoogle Scholar
  27. 27.
    Magli MC, Jones GM, Lundin K, Van den Abbeel E. Atlas of human embryology: from oocytes to preimplantation embryos. Hum Reprod. 2012;27:1.CrossRefGoogle Scholar
  28. 28.
    Mönkkönen KS, Aflatoonian R, Lee K-F, Yeung WS, Tsao S-W, Laitinen JT, et al. Localization and variable expression of Gαi2 in human endometrium and fallopian tubes. Hum Reprod. 2007;22(5):1224–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Mönkkönen KS, Aflatoonian R, Lee K-F, Yeung WS, Tsao S-W, Laitinen JT, et al. Hormonal regulation of Gαi2 and mPRα in immortalized human oviductal cell line OE-E6/E7. MHR. 2007;13(12):845–51.CrossRefPubMedGoogle Scholar
  30. 30.
    Stocco C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 2008;73(5):473–87.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lu X, Wu Y, Gao X-H, Wang Y-W, Wang L, Sun X-X. Effect of letrozole on estradiol production and P450 aromatase messenger RNA expression of cultured luteinized granulosa cells from women with and without endometriosis. Fertil Steril. 2012;98(1):131–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Harlow C, Cahill D, Maile L, Talbot W, Mears J, Wardle P, et al. Reduced preovulatory granulosa cell steroidogenesis in women with endometriosis. J Clin Endocrinol Metab. 1996;81(1):426–9.PubMedGoogle Scholar
  33. 33.
    De Abreu LG, Romã£O GS, Reis RMD, Ferriani RA, de Sã¡ MFS, Moura MD. Reduced aromatase activity in granulosa cells of women with endometriosis undergoing assisted reproduction techniques. Gynecol Endocrinol. 2006;22(8):432–6.CrossRefPubMedGoogle Scholar
  34. 34.
    De Abreu LG, Silveira VS, Scrideli CA, Ramos ES, Dos Reis RM, Ferriani RA, et al. Endometriosis does not alter aromatase gene expression (CYP19A1) in mural lutein-granulosa cells of women undergoing assisted reproduction techniques—a pilot study. J Endometriosis. 2011;3(4):177–82.Google Scholar
  35. 35.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.CrossRefPubMedGoogle Scholar
  36. 36.
    Nan X, Ng H-H, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992;69(6):905–14.CrossRefPubMedGoogle Scholar
  38. 38.
    Fo F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003;278(6):4035–40.CrossRefGoogle Scholar
  39. 39.
    Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–19.CrossRefPubMedGoogle Scholar
  40. 40.
    Fischer JJ, Toedling J, Krueger T, Schueler M, Huber W, Sperling S. Combinatorial effects of four histone modifications in transcription and differentiation. Genomics. 2008;91(1):41–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Adashi E, Hsueh A. Estrogens augment the stimulation of ovarian aromatase activity by follicle-stimulating hormone in cultured rat granulosa cells. J Biol Chem. 1982;257(11):6077–83.PubMedGoogle Scholar
  42. 42.
    Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29(14):2905–19.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bréard E, Roussel H, Lindet Y, Mittre H, Leymarie P. Presence of exon I. 4 mRNA from CYP19 gene in human granulosa cells. Mol Cell Endocrinol. 1999;154(1):187–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Hervouet E, Cartron P-F, Jouvenot M, Delage-Mourroux R. Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics. 2013;8(3):237–45.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dago DN, Scafoglio C, Rinaldi A, Memoli D, Giurato G, Nassa G, et al. Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells. BMC Genomics. 2015;16(1):367.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bulun SE, Monsivais D, Kakinuma T, Furukawa Y, Bernardi L, Pavone ME, et al. Molecular biology of endometriosis: from aromatase to genomic abnormalities. Semin Reprod Med. 2015;2015:220–4.Google Scholar
  47. 47.
    Mahdian S, Aflatoonian R, Yazdi RS, Yaghmaei P, Ramazanali F, Afsharian P, et al. Macrophage migration inhibitory factor as a potential biomarker of endometriosis. Fertil Steril. 2015;103(1):153–9. e3.CrossRefPubMedGoogle Scholar
  48. 48.
    Simon C, Gutierrez A, Vidal A, De los Santos M, Tarin J, Remohi J, et al. Outcome of patients with endometriosis in assisted reproduction: results from in-vitro fertilization and oocyte donation. Hum Reprod. 1994;9(4):725–9.PubMedGoogle Scholar
  49. 49.
    Pellicer A, Navarro J, Bosch E, Garrido N, Garcia‐Velasco JA, Remohí J, et al. Endometrial quality in infertile women with endometriosis. Ann N Y Acad Sci. 2001;943(1):122–30.CrossRefPubMedGoogle Scholar
  50. 50.
    Hammes SR. Steroids and oocyte maturation—a new look at an old story. Mol Endocrinol. 2004;18(4):769–75.CrossRefPubMedGoogle Scholar
  51. 51.
    Tesarik J, Mendoza C. Nongenomic effects of 17 beta-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J Clin Endocrinol Metab. 1995;80(4):1438–43.PubMedGoogle Scholar
  52. 52.
    Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Stril. 2015;103(2):303–16.CrossRefGoogle Scholar
  53. 53.
    Neal MS, Younglai EV, Holloway AC, Foster WG. Aromatase activity in granulosa cells as a predictor of pregnancy potential. International Congress Series; 2004: Elsevier B.V.; 2004. p. 139–42. doi: 10.1016/j.ics 2004.05.022.
  54. 54.
    Peña JE, Chang PL, Chan L-K, Zeitoun K, Thornton MH, Sauer MV. Supraphysiological estradiol levels do not affect oocyte and embryo quality in oocyte donation cycles. Hum Reprod. 2002;17(1):83–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Brizek CL, Schlaff S, Pellegrini VA, Frank JB, Worrilow KC. Increased incidence of aberrant morphological phenotypes in human embryogenesis—an association with endometriosis. J Assist Reprod Genet. 1995;12(2):106–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Sanchez AM, Somigliana E, Vercellini P, Pagliardini L, Candiani M, Vigano P. Endometriosis as a detrimental condition for granulosa cell steroidogenesis and development: from molecular alterations to clinical impact. J Steroid Biochem Mol Biol. 2016;155:35–46.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elham Hosseini
    • 1
  • Fereshteh Mehraein
    • 1
  • Maryam Shahhoseini
    • 2
  • Leili Karimian
    • 3
  • Fatemeh Nikmard
    • 1
  • Mahnaz Ashrafi
    • 4
  • Parvaneh Afsharian
    • 2
  • Reza Aflatoonian
    • 4
  1. 1.Department of Anatomy, School of MedicineIran University of Medical SciencesTehranIran
  2. 2.Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive BiomedicineACECRTehranIran
  3. 3.Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive BiomedicineACECRTehranIran
  4. 4.Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive BiomedicineACECRTehranIran

Personalised recommendations