Skip to main content

Advertisement

Log in

Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Testicular ischemia is the main consequence of testicular torsion, in both clinical and experimental aspects. Preservation and auto-transplantation of spermatogonial stem cells (SSCs) could be a new treatment for infertility in testicular ischemia following testicular torsion.

Methods

To apply the idea in this study, animals were randomly divided into four groups of control, sham, with torsion, and with torsion followed by transplantation (TT). Isolated SSCs from neonatal mice were cultured and identified by flow cytometry (C-KIT, INTEGRIN β1 +) and RT-PCR (Reverse transcription polymerase chain reaction) for specific spermatogonial cell markers (Oct4, Gfrα-1, Plzf, Vasa, Itgα 6 , and Itgβ 1 ). SSCs were transplanted upon a 2-h testicular torsion in the TT group. Cultured cells were transplanted into ischemia reperfusion testicle 2 weeks post-testicular torsion. Eight weeks after SSCs transplantation, the SSCs-transplanted testes and epididymis were removed for sperm analysis, weight and histopathological evaluation, and pre- and post-meiotic gene expression assessment by qRT-PCR.

Results

Our findings indicated that all evaluated parameters (epididymal sperm profile, Johnsen score, Plzf, Gfrα-1, Scp-1, Tekt-1 expressions, and histopathological profile) were significantly decreased following testicular torsion (group 3) when compared to the control group (p ≤ 0.05). However, all abovementioned parameters showed a significant increase/improvement in torsion-transplantation group compared to torsion group. However, these parameters in the TT group were significantly lower in the sham and control groups (p ≤ 0.05).

Conclusion

SSCs transplantation could up-regulate the expression of pre- and post-meiotic genes in testicular ischemia, which resulted in improvement of both testicular function and structure after testicular torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schilling K, Toth B, Rösner S, Strowitzki T, Wischmann T. Prevalence of behaviour-related fertility disorders in a clinical sample: results of a pilot study. Archives of Gynecology and Obstetrics. 2012:1–8.

  2. Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G et al. European Association of Urology Guidelines on Male Infertility: the 2012 update. European urology. 2012.

  3. Ahmed A, Bello A, Mbibu NH, Maitama HY, Kalayi GD. Epidemiological and aetiological factors of male infertility in northern Nigeria. Niger J Clin Pract. 2010;13(2):205–9.

    CAS  PubMed  Google Scholar 

  4. Anderson J, Williamson R. Testicular torsion in Bristol: a 25‐year review. Br J Surg. 1988;75(10):988–92.

    Article  CAS  PubMed  Google Scholar 

  5. Melekos M, Asbach H, Markou S. Etiology of acute scrotum in 100 boys with regard to age distribution. J Urol. 1988;139(5):1023–5.

    CAS  PubMed  Google Scholar 

  6. Cuckow P, Frank J. Torsion of the testis. BJU Int. 2000;86(3):349–53.

    Article  CAS  PubMed  Google Scholar 

  7. Bennett S, Nicholson MS, Little TM. Torsion of the testis: why is the prognosis so poor? Br Med J. 1987;294(6575):824.

    Article  CAS  Google Scholar 

  8. Anderson J, Williamson R. Fertility after torsion of the spermatic cord. Br J Urol. 2008;65(3):225–30.

    Article  Google Scholar 

  9. Cox AM, Patel H, Gelister J. Testicular torsion. Br J Hosp Med. 2012;73(3):C34–6.

    Article  Google Scholar 

  10. Nguyen L, Lievano G, Ghosh L, Radhakrishnan J, Fornell L, John E. Effect of unilateral testicular torsion on blood flow and histology of contralateral testes. J Pediatr Surg. 1999;34(5):680–3.

    Article  CAS  PubMed  Google Scholar 

  11. Wampler SM, Llanes M. Common scrotal and testicular problems. Prim Care. 2010;37(3):613–26.

    Article  PubMed  Google Scholar 

  12. Torres MA, Bordin ALB, Crezcynski-Pasa TB, Boveris A. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury. Mol Asp Med. 2004;25(1–2):199–210.

    Google Scholar 

  13. Aitken RJ, Baker MA. Oxidative stress and male reproductive biology. Reprod Fertil Dev. 2004;16(5):581–8.

    Article  CAS  PubMed  Google Scholar 

  14. Agarwal A, Prabakaran SA. Mechanism, measurement and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963.

    CAS  PubMed  Google Scholar 

  15. Abdallah B, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2007;15(2):109–16.

    Article  PubMed  Google Scholar 

  16. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. Derivation of male germ cells from bone marrow stem cells. Lab Investig. 2006;86(7):654–63.

    Article  CAS  PubMed  Google Scholar 

  17. Koruji M, Movahedin M, Mowla SJ, Gourabi H, Pour-Beiranvand S, Arfaee AJ. Autologous transplantation of adult mice spermatogonial stem cells into gamma irradiated testes. Cell J(Yakhteh). 2012;14(2):82–9.

    Google Scholar 

  18. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Izadyar F, Den Ouden K, Stout TA, Stout J, Coret J, Lankveld DP, et al. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction. 2003;126(6):765–74.

    Article  CAS  PubMed  Google Scholar 

  20. Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I. Germ cell transplantation in goats. Mol Reprod Dev. 2003;64(4):422–8.

    Article  CAS  PubMed  Google Scholar 

  21. Schlatt S, Foppiani L, Rolf C, Weinbauer GF, Nieschlag E. Germ cell transplantation into X-irradiated monkey testes. Hum Reprod. 2002;17(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  22. Ma W, An L, Wu Z, Wang X, Guo M, Miao K, et al. Efficient and safe recipient preparation for transplantation of mouse spermatogonial stem cells: pretreating testes with heat shock. Biol Reprod. 2011;85(4):670–7. doi:10.1095/biolreprod.110.089623.

    Article  CAS  PubMed  Google Scholar 

  23. Ohta H, Tohda A, Nishimune Y. Proliferation and differentiation of spermatogonial stem cells in the w/wv mutant mouse testis. Biol Reprod. 2003;69(6):1815–21.

    Article  CAS  PubMed  Google Scholar 

  24. McLean DJ, Friel PJ, Johnston DS, Griswold MD. Characterization of spermatogonial stem cell maturation and differentiation in neonatal mice. Biol Reprod. 2003;69(6):2085–91.

    Article  CAS  PubMed  Google Scholar 

  25. McLean DJ. Spermatogonial stem cell transplantation, testicular function, and restoration of male fertility in mice. Methods Mol Biol. 2008;450:149–62.

    Article  CAS  PubMed  Google Scholar 

  26. Azizollahi S, Aflatoonian R, Sedigi-Gilani MA, Asghari Jafarabadi M, Behnam B, Azizollahi G, et al. Recruiting testicular torsion introduces an azoospermic mouse model for spermatogonial stem cell transplantation. Urol J. 2014;11(3):1648–55.

    PubMed  Google Scholar 

  27. Lysiak JJ, Turner SD, Nguyen QAT, Singbartl K, Ley K, Turner TT. Essential role of neutrophils in germ cell-specific apoptosis following ischemia/reperfusion injury of the mouse testis. Biol Reprod. 2001;65(3):718–25.

    Article  CAS  PubMed  Google Scholar 

  28. van Pelt AM, Morena AR, van Dissel-Emiliani FM, Boitani C, Gaemers IC, de Rooij DG, et al. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod. 1996;55(2):439–44.

    Article  PubMed  Google Scholar 

  29. Eslahi N, Hadjighassem MR, Joghataei MT, Mirzapour T, Bakhtiyari M, Shakeri M, et al. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. Int J Nanomedicine. 2013;8:4563–76. doi:10.2147/IJN.S45535.

    PubMed  PubMed Central  Google Scholar 

  30. Dirami G, Ravindranath N, Pursel V, Dym M. Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol Reprod. 1999;61(1):225–30.

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol. 1997;41(1):111–22.

    CAS  PubMed  Google Scholar 

  32. Johnsen SG. Testicular biopsy score count—a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormone Research in Paediatrics. 1970;1(1):2–25.

    Article  CAS  Google Scholar 

  33. Tajaddini S, Ebrahimi S, Behnam B, Bakhtiyari M, Joghataei MT, Abbasi M, et al. Antioxidant effect of manganese on the testis structure and sperm parameters of formalin-treated mice. Andrologia. 2014;46(3):246–53. doi:10.1111/and.12069.

    Article  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  35. van Pelt AMM, Roepers-Gajadien HL, Gademan IS, Creemers LB, de Rooij DG, van Dissel-Emiliani FMF. Establishment of cell lines with rat spermatogonial stem cell characteristics. Endocrinology. 2002;143(5):1845–50.

    Article  PubMed  Google Scholar 

  36. Turner TT. Acute experimental testicular torsion. No effect on the contralateral testis. J Androl. 1985;6(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  37. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kubota H, Brinster RL. Technology insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Rev Endocrinol. 2006;2(2):99–108.

    CAS  Google Scholar 

  39. He L, Liu B, Xipeng G, Xie G, Liao S, Quan D, et al. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur Cell Mater. 2009;18:63–74.

    CAS  PubMed  Google Scholar 

  40. Brinster RL. Male germline stem cells: from mice to men. Science (New York). NY. 2007;316(5823):404–5. doi:10.1126/science.1137741.

    Article  CAS  Google Scholar 

  41. Oatley JM, Reeves JJ, McLean DJ. Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biol Reprod. 2004;71(3):942–7.

    Article  CAS  PubMed  Google Scholar 

  42. Honaramooz A, Megee SO, Dobrinski I. Germ cell transplantation in pigs. Biol Reprod. 2002;66(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69(2):612–6.

    Article  CAS  PubMed  Google Scholar 

  44. Fujita K, Ohta H, Tsujimura A, Takao T, Miyagawa Y, Takada S, et al. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia. J Clin Invest. 2005;115(7):1855–61. doi:10.1172/JCI24189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnston DS, Russell LD, Griswold MD. Advances in spermatogonial stem cell transplantation. Rev Reprod. 2000;5(3):183–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kanatsu-Shinohara M, Inoue K, Lee J, Miki H, Ogonuki N, Toyokuni S, et al. Anchorage-independent growth of mouse male germline stem cells in vitro. Biol Reprod. 2006;74(3):522–9. doi:10.1095/biolreprod.105.046441.

    Article  CAS  PubMed  Google Scholar 

  47. Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol. 2008;24:263–86. doi:10.1146/annurev.cellbio.24.110707.175355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hofmann MC. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol. 2008;288(1–2):95–103. doi:10.1016/j.mce.2008.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sato T, Aiyama Y, Ishii-Inagaki M, Hara K, Tsunekawa N, Harikae K, et al. Cyclical and patch-like GDNF distribution along the basal surface of Sertoli cells in mouse and hamster testes. PLoS One. 2011;6(12):e28367. doi:10.1371/journal.pone.0028367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huleihel M, Abuelhija M, Lunenfeld E. In vitro culture of testicular germ cells: regulatory factors and limitations. Growth Factors. 2007;25(4):236–52. doi:10.1080/08977190701783400.

    Article  CAS  PubMed  Google Scholar 

  51. Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, de Rooij DG. Isolation and purification of type A spermatogonia from the bovine testis. Reproduction. 2002;124(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  52. Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds. Soft Matter. 2008;4(11):2144–9. doi:10.1039/b807088c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc Natl Acad Sci U S A. 2000;97(15):8346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schrans-Stassen BH, van de Kant HJ, de Rooij DG, van Pelt AM. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology. 1999;140(12):5894–900.

    Article  CAS  PubMed  Google Scholar 

  55. Shinohara T, Avarbock MR, Brinster RL. Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 1999;96(10):5504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ogawa T, Dobrinski I, Brinster R. Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell. 1999;31(5):461–72.

    Article  CAS  PubMed  Google Scholar 

  57. Russell L, Ettlin R, Sinha Hikim A, Clegg E. Mammalian spermatogenesis. Histological and histopathological evaluation of the testis. 1990;1:1–40.

    CAS  Google Scholar 

  58. Koruji M. Autograft of fresh and freezed spermatogonial cells of adult mouse after coculture with Sertoli cells and treatment with GDNF, SCF and GM-CSF cytokines to the azoospermic mice with gamma-ray. Presented for the Ph D, Tehran Tarbiat Modares University. 2007.

  59. Shinohara T, Avarbock MR, Brinster RL. Functional analysis of spermatogonial stem cells in steel and cryptorchid infertile mouse models. Dev Biol. 2000;220(2):401–11. doi:10.1006/dbio.2000.9655.

    Article  CAS  PubMed  Google Scholar 

  60. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A. 2003;100(11):6487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McLean DJ. Spermatogonial stem cell transplantation and testicular function. Cell Tissue Res. 2005;322(1):21–31. doi:10.1007/s00441-005-0009-z.

    Article  PubMed  Google Scholar 

  62. Von Schönfeldt V, Wistuba J, Schlatt S. Notch-1, c-kit and GFRα-1 are developmentally regulated markers for premeiotic germ cells. Cytogenet Genome Res. 2004;105(2–4):235–9.

    Article  Google Scholar 

  63. Buageaw A, Sukhwani M, Ben-Yehudah A, Ehmcke J, Rawe VY, Pholpramool C, et al. GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biol Reprod. 2005;73(5):1011–6. doi:10.1095/biolreprod.105.043810.

    Article  CAS  PubMed  Google Scholar 

  64. Grisanti L, Falciatori I, Grasso M, Dovere L, Fera S, Muciaccia B, et al. Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells. 2009;27(12):3043–52. doi:10.1002/stem.206.

    CAS  PubMed  Google Scholar 

  65. Hofmann M-C, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol. 2005;279(1):114–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36(6):647–52.

    Article  CAS  PubMed  Google Scholar 

  67. Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials. 2007;28(36):5401–6. doi:10.1016/j.biomaterials.2007.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mirzapour T, Movahedin M, Tengku Ibrahim TA, Haron AW, Nowroozi MR. Evaluation of the effects of cryopreservation on viability, proliferation and colony formation of human spermatogonial stem cells in vitro culture. Andrologia. 2013;45(1):26–34. doi:10.1111/j.1439-0272.2012.01302.x.

    Article  CAS  PubMed  Google Scholar 

  69. Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod. 1999;60(6):1429–36.

    Article  CAS  PubMed  Google Scholar 

  70. Amos LA. The tektin family of microtubule-stabilizing proteins. Genome Biol. 2008;9(229):231–42.

    Google Scholar 

  71. Ohta H, Yomogida K, Yamada S, Okabe M, Nishimune Y. Real‐time observation of transplanted ‘green germ cells’: proliferation and differentiation of stem cells. Develop Growth Differ. 2000;42(2):105–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from Iran University of Medical Sciences (IUMS) (Number: 90-04-30-14879) for PhD student thesis, and all experiments have been performed at Cellular and Molecular Research Center, IUMS, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Koruji.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Capsule SSCs transplantation increase relative expression of pre-/post-meiotic genes and improve sperm parameters and testis structure in testicular torsion-detorsion mice.

Summary sentence

SSCs transplantation increase relative expression of pre-/post-meiotic genes and improve sperm parameters and testis structure in the ischemic condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizollahi, S., Aflatoonian, R., Sadighi Gilani, M.A. et al. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J Assist Reprod Genet 33, 771–781 (2016). https://doi.org/10.1007/s10815-016-0708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0708-2

Keywords

Navigation