Skip to main content

Advertisement

Log in

Bu Shen Tiao Chong recipe restores diminished ovary reserve through the BDNF pathway

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to explore the molecular pathway of BSTCR (Bu Shen Tiao Chong recipe) in retrieving diminished ovary reserve (DOR).

Methods

The DOR model was established through injecting cyclophosphamide and the effect of BSTCR was examined under this background.

Results

BSTCR was shown to restore depleted brain-derived neurotrophic factor (BDNF), CDC2, cyclin B, GSH1, and P38 levels as well as impaired oocyte maturation and the higher apoptosis induced in DOR. BSTCR also enhances the response of oocytes to in vitro fertilization, with higher implantation rate, birth rate, and placenta weight.

Conclusion

BSTCR might exert its beneficial role in oocyte maturation and restore DOR through regulating the BDNF pathway. And this pathway itself is probably through the consequence on several serum hormones such as FSH, E2, Inhibin B, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IVF:

In vitro fertilization

FSH:

Follicle-stimulating hormone

E2:

Estradiol

AMH:

Anti-Müllerian hormone

INHB:

Inhibin B

BDNF:

Brain-derived neurotrophic factor

BSTCR:

Bu Shen Tiao Chong recipe

DOR:

Diminished ovarian reserve

ICM:

Inner cell mass

TE:

Trophoblast

References

  1. Johnson MH, Everitt BJ. Essential reproduction. 5th ed. Oxford: Blackwell Science; 2000.

    Google Scholar 

  2. Virant-Klun I. Postnatal oogenesis in humans: a review of recent findings. Stem Cells Cloning. 2015;8:49–60.

    PubMed  PubMed Central  Google Scholar 

  3. Koering MJ. Cyclic changes in ovarian morphology during the menstrual cycle in Macaca mulatta. Am J Anat. 1969;126:73–101.

    Article  CAS  PubMed  Google Scholar 

  4. VanWezel IL, Rodgers RJ. Morphological characterization of bovine primordial follicles and their environment in vivo. Biol Reprod. 1996;55:1003–11.

    Article  CAS  Google Scholar 

  5. Hulshof SCJ, Figueiredo JR, Beckers JF, Bevers MM, Vandenhurk R. Isolation and characterization of preantral follicles from fetal bovine ovaries. Vet Quart. 1994;16:78–80.

    Article  CAS  Google Scholar 

  6. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140:489–504.

    Article  CAS  PubMed  Google Scholar 

  7. Hsueh AJW, Adashi EY, Jones PBC, Welsh TH. Hormonal-regulation of the differentiation of cultured ovarian granulosa-cells. Endocr Rev. 1984;5:76–127.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuda F, Inoue N, Manabe N, Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J Reprod Dev. 2012;58(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  9. Phillipps HR, Hurst PR. XIAP: a potential determinant of ovarian follicular fate. Reproduction. 2012;144(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  10. Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci. 2007;120:1330–40.

    Article  CAS  PubMed  Google Scholar 

  11. Gilchrist RB, Thompson JG. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology. 2007;67(1):6–15.

    Article  PubMed  Google Scholar 

  12. Sutton ML, Gilchrist RB, Thompson JG. Effect of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9(1):35–48.

    Article  CAS  PubMed  Google Scholar 

  13. Ouandaogo ZG, Haouzi D, Assou S, et al. Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS One. 2011;6(11):e27179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000;14:2919–37.

    Article  CAS  PubMed  Google Scholar 

  15. Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991;66:395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderson RA, Bayne RA, Gardner J, De Sousa PA. Brain-derived neurotrophic factor is a regulator of human oocyte maturation and early embryo development. Fertil Steril. 2010;93:1394–406.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao P, Qiao J, Huang S, Zhang Y, Liu S, Yan LY, et al. Gonadotrophin-induced paracrine regulation of human oocyte maturation by BDNF and GDNF secreted by granulosa cells. Hum Reprod. 2011;26:695–702.

    Article  CAS  PubMed  Google Scholar 

  18. Kawamura K, Kawamura N, Mulders SM, Sollewijn Gelpke MD, Hsueh AJ. Ovarian brain-derived neurotrophic factor (BDNF) promotes the development of oocytes into preimplantation embryos. PNAS. 2005;102:9206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Li J, Su P, Xiong C. The role of brain-derived neurotrophic factor in mouse oocyte maturation in vitro. J Huazhong Univ Sci Technolog Med Sci. 2010;30:781–5.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Liang Y, Liu Y, Xiong CL. The role of brain-derived neurotrophic factor in mouse oocyte maturation in vitro involves activation of protein kinase B. Theriogenology. 2010;73:1096–103.

    Article  CAS  PubMed  Google Scholar 

  21. Su B, Ji YS, Sun XL, Liu XH, Chen ZY. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J Biol Chem. 2014;289(3):1213–26.

    Article  CAS  PubMed  Google Scholar 

  22. Yu Y, Yan J, Li M, Yan L, Zhao Y, Lian Y, et al. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Hum Reprod. 2012;27(7):2146–59.

    Article  CAS  PubMed  Google Scholar 

  23. Gong L, Wyatt RJ, Baker I, Masserano JM. Brain-derived and glial cell line-derived neurotrophic factors protect a catecholaminergic cell line from dopamine induced cell death. Neurosci Lett. 1999;263:153–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ovejero-Benito MC, Frade JM. Brain-derived neurotrophic factor-dependent cdk1 inhibition prevents G2/M progression in differentiating tetraploid neurons. PLoS One. 2013;8(5):e64890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vakili Zahir N, Abkhezr M, Khaje Piri Z, Ostad SN, Kebriaezade A, Ghahremani MH. The time course of JNK and P38 activation in cerebellar granule neurons following glucose deprivation and BDNF treatment. Iran J Pharm Res. 2012;11(1):315–23.

    PubMed  PubMed Central  Google Scholar 

  26. Gao H, Xia T, Han B, Yang J. Clinic study of BCTCR in treating premature ovary failure. Liaoning Journal of Traditional Chinese Medicine, Nov 2007.

  27. Xia T, Zhao LY, Wang BJ, Fu Y, Ma RH. Effect of BCTCR and dehydroepiandrosterone in treating infertility caused by diminished ovarian reserve. Journal of Tianjin University of Traditional Chinese Medicine. Feb 2014.

  28. Narkwichean A, Maalouf W, Campbell BK, Jayaprakasan K. Efficacy of dehydroepiandrosterone to improve ovarian response in women with diminished ovarian reserve: a meta-analysis. Reprod Biol Endocrinol. 2013;11:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xia T, Han B. Effect of serum containing Bushen Tiaochong recipe on proliferation, hormone secretion, and mRNA expression in ovarian granulosa cells of rats. Drugs & Clinic. 2011;26(5):384–8.

    Google Scholar 

  30. Gleicher N, Barad DH. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reprod Biol Endocrinol. 2011;9:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xia T, Fu Y, Gao H, Zhao Z, Zhao L, Han B. Recovery of ovary function impaired by chemotherapy using Chinese herbal medicine in a rat model. Syst Biol Reprod Med. 2014;60(5):293–303.

    Article  PubMed  Google Scholar 

  32. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394(6691):369–74.

    Article  CAS  PubMed  Google Scholar 

  33. Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, et al. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet. 2007;39(3):386–90.

    Article  CAS  PubMed  Google Scholar 

  34. Britt KL, Drummond AE, Cox VA, Dyson M, Wreford NG, et al. An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology. 2000;141:2614–23.

    CAS  PubMed  Google Scholar 

  35. Ma SF, Liu XY, Miao DQ, Han ZB, Zhang X, Miao YL, et al. Parthenogenetic activation of mouse oocytes by strontium chloride: a search for the best conditions. Theriogenology. 2005;64(5):1142–57.

    Article  CAS  PubMed  Google Scholar 

  36. Sathyapalan T, David R, Gooderham NJ, Atkin SL. Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci Rep. 2015;5:16890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koyama H, Wada T, Nishizawa Y, Iwanaga T, Aoki Y. Cyclophosphamide-induced ovarian failure and its therapeutic significance in patients with breast cancer. Cancer. 1977;39(4):1403–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ezoe K, Murata N, Yabuuchi A, et al. Long-term adverse effects of cyclophosphamide on follicular growth and angiogenesis in mouse ovaries. Reprod Biol. 2014;14(3):238–42.

    Article  PubMed  Google Scholar 

  39. Gown AM, Willingham MC. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem. 2002;50:449–54.

    Article  CAS  PubMed  Google Scholar 

  40. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64:904–9.

    Article  CAS  PubMed  Google Scholar 

  41. Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85:584–91.

    Article  CAS  PubMed  Google Scholar 

  42. Liu S, Li Y, Gao X, Yan JH, Chen ZJ. Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution. Fertil Steril. 2010;93(5):1550–5.

    Article  PubMed  Google Scholar 

  43. Moawad AR, Xu B, Tan SL, Taketo T. l-Carnitine supplementation during vitrification of mouse germinal vesicle stage-oocytes and their subsequent in vitro maturation improves meiotic spindle configuration and mitochondrial distribution in metaphase II oocytes. Hum Reprod. 2014;29(10):2256–68.

    Article  PubMed  Google Scholar 

  44. Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem. 1999;274(27):18947–56.

    Article  CAS  PubMed  Google Scholar 

  45. Gurgis FM, Ziaziaris W, Munoz L. Mitogen-activated protein kinase-activated protein kinase 2 in neuroinflammation, heat shock protein 27 phosphorylation, and cell cycle: role and targeting. Mol Pharmacol. 2014;85(2):345–56.

    Article  PubMed  Google Scholar 

  46. Palmer A, Gavin AC, Nebreda AR. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 1998;17(17):5037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Revest JM, Le Roux A, Roullot-Lacarrière V, Kaouane N, Vallée M, Kasanetz F, et al. BDNF-TrkB signaling through Erk1/2 MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids. Mol Psychiatry. 2014;19(9):1001–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin YL, Wang GJ, Huang CL, Lee YC, Liao WC, Lai WL, et al. Ligusticum chuanxiong as a potential neuroprotectant for preventing serum deprivation-induced apoptosis in rat pheochromocytoma cells: functional roles of mitogen-activated protein kinases. J Ethnopharmacol. 2009;122(3):417–23.

    Article  PubMed  Google Scholar 

  49. Zhang YG, Xiong KR. Effects of electroacupuncture combined with compound Salviae Miltiorrhizae tablet on the expressions of brain derived neurotrophic factor and vascular endothelial growth factor in hippocampus CA1 of chronic cerebral ischemia rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012;32(5):643–6.

    CAS  PubMed  Google Scholar 

  50. Yin Q, Lu H, Bai Y, Tian A, Yang Q, Wu J, et al. A metabolite of Danshen formulae attenuates cardiac fibrosis induced by isoprenaline, via a NOX2/ROS/P38 pathway. J Pharmacol. 2015;172:5573–85.

    CAS  Google Scholar 

  51. Lu H, Tian A, Wu J, Yang C, Xing R, Jia P, et al. Danshensu inhibits β-adrenergic receptors-mediated cardiac fibrosis by ROS/P38 MAPK axis. Biol Pharm Bull. 2014;37(6):961–7.

    Article  CAS  PubMed  Google Scholar 

  52. Xia D, Li W, Zhang L, Qian H, Yao S, Qi X. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells. Neoplasma. 2014;61(5):523–32.

    Article  CAS  PubMed  Google Scholar 

  53. Li YF, Gong ZH, Yang M, Zhao YM, Luo ZP. Inhibition of the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the corticosterone induced apoptosis in PC12 cells. Life Sci. 2003;72(8):933–42.

    Article  CAS  PubMed  Google Scholar 

  54. Wu JG, Ma L, Zhang SY, Zhu ZZ, Zhang H, Qin LP, et al. Essential oil from rhizomes of Ligusticum chuanxiong induces apoptosis in hypertrophic scar fibroblasts. Pharm Biol. 2011;49(1):86–93.

    Article  PubMed  Google Scholar 

  55. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silva E, Greene AF, Strauss K, Herrick JR, Schoolcraft WB, Krisher RL. Antioxidant supplementation during in vitro culture improves mitochondrial function and development of embryos from aged female mice. Reprod Fertil Dev. 2016. doi:10.1071/RD14474.

  57. Lian HY, Gao Y, Jiao GZ, Sun MJ, Wu XF, Wang TY, et al. Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress-induced oxidative stress on mouse oocytes. Reproduction. 2013;146(6):559–68.

    Article  CAS  PubMed  Google Scholar 

  58. Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI. Nuclear factor-kappaB-dependent sestrin2 induction mediates the antioxidant effects of BDNF against mitochondrial inhibition in rat cortical neurons. Reproduction. 2013;146(6):559–68.

    Article  PubMed  Google Scholar 

  59. Niu Q, Mu L, Li S, Xu S, Ma R, Guo S. Proanthocyanidin protects human embryo hepatocytes from fluoride-induced oxidative stress by regulating iron metabolism. Biol Trace Elem Res. 2016;169:174–9.

    Article  CAS  PubMed  Google Scholar 

  60. Chen DL, Zhang P, Lin L, Zhang HM, Deng SD, Wu ZQ, et al. Protective effects of bajijiasu in a rat model of Aβ25-35-induced neurotoxicity. J Ethnopharmacol. 2014;154(1):206–17.

    Article  PubMed  Google Scholar 

  61. Luine V, Frankfurt M. Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience. 2013;239:34–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Groome NP, Illingworth PJ, O’Brien M, Pai R, Rodger FE, Mather JP, et al. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81:1401–5.

    CAS  PubMed  Google Scholar 

  63. Buyuk E, Santoro N, Cohen HW, Charron MJ, Jindal S. Reduced neurotrophin receptor tropomyosin-related kinase A expression in human granulosa cells: a novel marker of diminishing ovarian reserve. Fertil Steril. 2011;96(2):474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen Q, Zhang W, Ran H, Feng L, Yan H, Mu X, et al. PKCδ and θ possibly mediate FSH-induced mouse oocyte maturation via NOX-ROS-TACE cascade signaling pathway. PLoS One. 2014;9(10):e111423.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kim JS, Song BS, Lee SR, Yoon SB, Huh JW, Kim SU, et al. Supplementation with estradiol-17β improves porcine oocyte maturation and subsequent embryo development. Fertil Steril. 2011;95(8):2582–4.

    Article  CAS  PubMed  Google Scholar 

  66. Luisi S, Florio P, Reis FM, Petraglia F. Inhibins in female and male reproductive physiology: role in gametogenesis, conception, implantation and early pregnancy. Hum Reprod Update. 2005;11(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  67. Li DR, Qin GS, Wei YM, Lu FH, Huang QS, Jiang HS, et al. Immunisation against inhibin enhances follicular development, oocyte maturation and superovulatory response in water buffaloes. Reprod Fertil Dev. 2011;23(6):788–97.

    Article  PubMed  Google Scholar 

  68. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol. 2009;11(5):631–6.

    Article  CAS  PubMed  Google Scholar 

  70. Eldar-Geva T, Ben-Chetrit A, Spitz IM, Rabinowitz R, Markowitz E, Mimoni T, et al. Dynamic assays of inhibin B, anti-Mullerian hormone and estradiol following FSH stimulation and ovarian ultrasonography as predictors of IVF outcome. Hum Reprod. 2005;20(11):3178–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (General Program, 81273791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xia.

Ethics declarations

Declaration of interests

The authors report no declarations of interest.

Funding

This work is supported by National Science Foundation for Post-doctoral Scientists of China (Grant No. 2014M562161).

Additional information

Capsule BSTCR might exert its beneficial role in oocyte maturation and restore DOR through regulating the BDNF pathway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, T., Fu, Y., Li, S. et al. Bu Shen Tiao Chong recipe restores diminished ovary reserve through the BDNF pathway. J Assist Reprod Genet 33, 795–805 (2016). https://doi.org/10.1007/s10815-016-0697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0697-1

Keywords

Navigation