The role of epigenetics in idiopathic male infertility

  • Sezgin GunesEmail author
  • Mehmet Alper ArslanEmail author
  • Gulgez Neslihan Taskurt Hekim
  • Ramazan Asci


Infertility is a complex disorder with multiple genetic and environmental causes. Although some specific mutations have been identified, other factors responsible for sperm defects remain largely unknown. Despite considerable efforts to identify the pathophysiology of the disease, we cannot explain the underlying mechanisms of approximately half of infertility cases. This study reviews current data on epigenetic regulation and idiopathic male infertility. Recent data have shown an association between epigenetic modifications and idiopathic infertility. In this regard, epigenetics has emerged as one of the promising research areas in understanding male infertility. Many studies have indicated that epigenetic modifications, including DNA methylation in imprinted and developmental genes, histone tail modifications and short non-coding RNAs in spermatozoa may have a role in idiopathic male infertility.


Infertility Epigenetics DNA methylation miRNA 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.


  1. 1.
    Boivin J et al. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22(6):1506–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Rives N. Y chromosome microdeletions and alterations of spermatogenesis, patient approach and genetic counseling. Ann Endocrinol. 2014;75(2):112–4.CrossRefGoogle Scholar
  3. 3.
    Roy A, Lin YN, Matzuk M. Genetics of idiopathic male infertility. In: Carrell DT, editor. The genetics of male ınfertility. Totowa: Humana Press Inc; 2007. p. 99–111.CrossRefGoogle Scholar
  4. 4.
    Hotaling JM. Genetics of male infertility. Urol Clin North Am. 2014;41(1):1–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Gunes S et al. Two males with SRY-positive 46, XX testicular disorder of sex development. Syst Biol Reprod Med. 2013;59(1):42–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Tuttelmann F et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLoS One. 2011;6(4):e19426.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lopes AM et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 2013;9(3):e1003349.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    He XJ et al. PRM1 variant rs35576928 (Arg > Ser) is associated with defective spermatogenesis in the Chinese Han population. Reprod Biomed Online. 2012;25(6):627–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Gupta N et al. Strong association of 677 C > T substitution in the MTHFR gene with male infertility—a study on an indian population and a meta-analysis. PLoS One. 2011;6(7):e22277.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Teng YN et al. A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han. Hum Reprod. 2012;27(9):2857–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu W et al. GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci Rep. 2013;3:2258.PubMedGoogle Scholar
  12. 12.
    Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31(3):309–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Abhari A et al. Altered of microRNA expression level in oligospermic patients. Iran J Reprod Med. 2014;12(10):681–6.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Jungwirth A et al. European Association of Urology guidelines on male infertility: the 2012 update. Eur Urol. 2012;62(2):324–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14(1):32–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Krausz C. Polymorphisms and male infertility. In: Carrell DT, editor. The genetics of male ınfertility. Totowa: Humana Press Inc; 2007. p. 275–89.CrossRefGoogle Scholar
  17. 17.
    Urdinguio RG et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30(5):1014–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Schutte B et al. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction. Andrology. 2013;1(6):822–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ferfouri F et al. A genome-wide DNA methylation study in azoospermia. Andrology. 2013;1(6):815–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Houshdaran S et al. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 2007;2(12):e1289.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hammoud SS et al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26(9):2558–69.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rotondo JC et al. Methylation loss at H19 imprinted gene correlates with methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males. Epigenetics. 2013;8(9):990–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhu J et al. On the nature of human housekeeping genes. Trends Genet. 2008;24(10):481–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.PubMedCrossRefGoogle Scholar
  27. 27.
    Eden S, Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994;4(2):255–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaneda M et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429(6994):900–3.PubMedCrossRefGoogle Scholar
  29. 29.
    La Salle S et al. Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L. BMC Dev Biol. 2007;7:104.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cheng P et al. Polymorphism in DNMT1 may modify the susceptibility to oligospermia. Reprod Biomed Online. 2014;28(5):644–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Santos F, Dean W. Epigenetic reprogramming during early development in mammals. Reproduction. 2004;127(6):643–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Hajkova P et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117(1-2):15–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73.PubMedCrossRefGoogle Scholar
  34. 34.
    Ficz G. New insights into mechanisms that regulate DNA methylation patterning. J Exp Biol. 2015;218(Pt 1):14–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25(23):2436–52.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Davis TL et al. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet. 2000;9(19):2885–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Boissonnas CC, Jouannet P, Jammes H. Epigenetic disorders and male subfertility. Fertil Steril. 2013;99(3):624–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Camprubi C et al. Semen samples showing an increased rate of spermatozoa with imprinting errors have a negligible effect in the outcome of assisted reproduction techniques. Epigenetics. 2012;7(10):1115–24.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Arnaud P. Genomic imprinting in germ cells: imprints are under control. Reproduction. 2010;140(3):411–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Horsthemke B. In brief: genomic imprinting and imprinting diseases. J Pathol. 2014;232(5):485–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Zheng HY et al. Assisted reproductive technologies do not increase risk of abnormal methylation of PEG1/MEST in human early pregnancy loss. Fertil Steril. 2011;96(1):84–9. e2.PubMedCrossRefGoogle Scholar
  42. 42.
    Kamiya M et al. The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet. 2000;9(3):453–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Broad KD, Curley JP, Keverne EB. Increased apoptosis during neonatal brain development underlies the adult behavioral deficits seen in mice lacking a functional paternally expressed gene 3 (Peg3). Dev Neurobiol. 2009;69(5):314–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Jing J et al. Effect of small nuclear ribonucleoprotein-associated polypeptide N on the proliferation of medulloblastoma cells. Mol Med Rep. 2015;11(5):3337–43.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Higashimoto K et al. Loss of CpG methylation is strongly correlated with loss of histone H3 lysine 9 methylation at DMR-LIT1 in patients with Beckwith-Wiedemann syndrome. Am J Hum Genet. 2003;73(4):948–56.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Jenkins TG, Aston KI, Trost C, Farley J, Hotaling JM, Carrell DT. Intrasample heterogeneity of sperm DNA methylation. Mol Hum Reprod. 2015;21:313–9.Google Scholar
  47. 47.
    Li B, Li JB, Xiao XF, Ma YF, Wang J, Liang XX, Zhao HX, Jiang F, Yao YQ, Wang XH. Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm. PLoS One. 2013;8:e71215.Google Scholar
  48. 48.
    Ramasamy R et al. Integrative DNA methylation and gene expression analysis identifies discoidin domain receptor 1 association with idiopathic nonobstructive azoospermia. Fertil Steril. 2014;102(4):968–73. e3.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Botezatu A et al. Methylation pattern of methylene tetrahydrofolate reductase and small nuclear ribonucleoprotein polypeptide N promoters in oligoasthenospermia: a case-control study. Reprod Biomed Online. 2014;28(2):225–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Sugimoto K, Koh E, Iijima M, Taya M, Maeda Y, Namiki M. Aberrant methylation of the TDMR of the GTF2A1L promoter does not affect fertilisation rates via TESE in patients with hypospermatogenesis. Asian J Androl. 2013;15:634–9.Google Scholar
  51. 51.
    Klaver R, Tuttelmann F, Bleiziffer A, Haaf T, Kliesch S, Gromoll J. DNA methylation in spermatozoa as a prospective marker in andrology. Andrology. 2013;1:731–40.Google Scholar
  52. 52.
    Richardson ME, Bleiziffer A, Tuttelmann F, Gromoll J, Wilkinson, MF. Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility. Hum Mol Genet. 2014;23:12–23.Google Scholar
  53. 53.
    Montjean D, Ravel C, Benkhalifa M, Cohen-Bacrie P, Berthaut I, Bashamboo A, Mcelreavey K. Methylation changes in mature sperm deoxyribonucleic acid from oligozoospermic men: assessment of genetic variants and assisted reproductive technology outcome. Fertil Steril. 2013;100:1241–7.Google Scholar
  54. 54.
    Khazamipour N et al. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum Reprod. 2009;24(9):2361–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Rotondo JC et al. Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod. 2012;27(12):3632–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Nanassy L, Carrell DT. Abnormal methylation of the promoter of CREM is broadly associated with male factor infertility and poor sperm quality but is improved in sperm selected by density gradient centrifugation. Fertil Steril. 2011;95(7):2310–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Minor A, Chow V, Ma S. Aberrant DNA methylation at imprinted genes in testicular sperm retrieved from men with obstructive azoospermia and undergoing vasectomy reversal. Reproduction. 2011;141(6):749–57.PubMedCrossRefGoogle Scholar
  58. 58.
    El Hajj N et al. Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev. 2011;5(2):60–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Nanassy L, Carrell DT. Analysis of the methylation pattern of six gene promoters in sperm of men with abnormal protamination. Asian J Androl. 2011;13:342–6.Google Scholar
  60. 60.
    Navarro-Costa P, Nogueira P, Carvalho M, Leal F, Cordeiro I, Calhaz-Jorge C, Goncalves J, Plancha, CE. Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod. 2010;25:2647–54.Google Scholar
  61. 61.
    Wu W et al. Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS One. 2010;5(11):e13884.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Marques CJ et al. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2.PubMedCrossRefGoogle Scholar
  63. 63.
    Marques CJ et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008;14(2):67–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Marques CJ et al. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril. 2010;94(2):585–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Kobayashi H et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Kobayashi H et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 2009;17(12):1582–91.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Boissonnas CC et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18(1):73–80.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Poplinski A et al. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl. 2010;33(4):642–9.PubMedGoogle Scholar
  69. 69.
    Kelly TL et al. Infertility in 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biol Reprod. 2005;72(3):667–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009;43:559–99.PubMedCrossRefGoogle Scholar
  71. 71.
    Cairns BR. The logic of chromatin architecture and remodelling at promoters. Nature. 2009;461(7261):193–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Hazzouri M et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol. 2000;79(12):950–60.PubMedCrossRefGoogle Scholar
  73. 73.
    Peng L, Seto E. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol. 2011;206:39–56.PubMedCrossRefGoogle Scholar
  74. 74.
    de Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction. 2001;121(3):347–54.PubMedCrossRefGoogle Scholar
  75. 75.
    Fenic I et al. In vivo effects of histone-deacetylase inhibitor trichostatin-A on murine spermatogenesis. J Androl. 2004;25(5):811–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Fenic I et al. In vivo application of histone deacetylase inhibitor trichostatin-a impairs murine male meiosis. J Androl. 2008;29(2):172–85.PubMedCrossRefGoogle Scholar
  77. 77.
    Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol. 2002;14(3):286–98.PubMedCrossRefGoogle Scholar
  78. 78.
    Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int J Androl. 2008;31(6):537–45.PubMedCrossRefGoogle Scholar
  79. 79.
    La Spina FA et al. Heterogeneous distribution of histone methylation in mature human sperm. J Assist Reprod Genet. 2014;31(1):45–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yuen BT et al. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development. 2014;141(18):3483–94.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Torregrosa N et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod. 2006;21(8):2084–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Rousseaux S et al. Molecular models for post-meiotic male genome reprogramming. Syst Biol Reprod Med. 2011;57(1-2):50–3.PubMedCrossRefGoogle Scholar
  83. 83.
    Meistrich ML et al. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Belokopytova IA et al. Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev. 1993;34(1):53–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.PubMedCrossRefGoogle Scholar
  86. 86.
    Nasr-Esfahani MH et al. Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online. 2004;9(6):652–8.PubMedCrossRefGoogle Scholar
  87. 87.
    de Mateo S et al. Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2009;91(3):715–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Su Z et al. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget. 2015;6(11):8474–90.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.PubMedGoogle Scholar
  91. 91.
    Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59.PubMedCrossRefGoogle Scholar
  92. 92.
    Bak CW, Yoon TK, Choi Y. Functions of PIWI proteins in spermatogenesis. Clin Exp Reprod Med. 2011;38(2):61–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gou LT, Dai P, Liu MF. Small noncoding RNAs and male infertility. Wiley Interdiscip Rev RNA. 2014;5(6):733–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Song R et al. Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci U S A. 2011;108(32):13159–64.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Korhonen HM et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One. 2011;6(9):e24821.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Romero Y et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS One. 2011;6(10):e25241.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wu Q et al. The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem. 2012;287(30):25173–90.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Salas-Huetos A et al. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril. 2014;102(1):213–22. e4.PubMedCrossRefGoogle Scholar
  99. 99.
    Lian J et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2009;7:13.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Gu A et al. Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum Reprod. 2010;25(12):2955–61.PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang H et al. A single nucleotide polymorphism in a miR-1302 binding site in CGA increases the risk of idiopathic male infertility. Fertil Steril. 2011;96(1):34–9. e7.PubMedCrossRefGoogle Scholar
  102. 102.
    Wang C et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–31.PubMedCrossRefGoogle Scholar
  103. 103.
    Wu W et al. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod. 2012;18(10):489–97.PubMedCrossRefGoogle Scholar
  104. 104.
    Qin Y et al. Genetic variants in microRNA biogenesis pathway genes are associated with semen quality in a Han-Chinese population. Reprod Biomed Online. 2012;24(4):454–61.PubMedCrossRefGoogle Scholar
  105. 105.
    Abu-Halima M et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril. 2013;99(5):1249–55. e16.PubMedCrossRefGoogle Scholar
  106. 106.
    Abhari A et al. Significance of microRNA targeted estrogen receptor in male fertility. Iran J Basic Med Sci. 2014;17(2):81–6.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Abu-Halima M et al. MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril. 2014;101(1):78–86. e2.PubMedCrossRefGoogle Scholar
  108. 108.
    Abu-Halima M et al. Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril. 2014;102(4):989–97. e1.PubMedCrossRefGoogle Scholar
  109. 109.
    Friemel C et al. Array-based DNA methylation profiling in male infertility reveals allele-specific DNA methylation in PIWIL1 and PIWIL2. Fertil Steril. 2014;101(4):1097–103. e1.PubMedCrossRefGoogle Scholar
  110. 110.
    Dabaja AA et al. Possible germ cell-Sertoli cell interactions are critical for establishing appropriate expression levels for the Sertoli cell-specific MicroRNA, miR-202-5p, in human testis. Basic Clin Androl. 2015;25:2.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Zhao, K., et al., miR-424/322 is downregulated in the semen of patients with severe DNA damage and may regulate sperm DNA damage. Reprod Fertil Dev, 2015.Google Scholar
  112. 112.
    Yang Q et al. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One. 2013;8(6):e66809.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Novotny GW et al. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ. 2007;14(4):879–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Beauchamp JF et al. Mechanism of the pressor response to intraperitoneal injection of bradykinin in guinea pigs. Peptides. 1991;12(3):513–21.PubMedCrossRefGoogle Scholar
  115. 115.
    Luo L et al. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One. 2010;5(8):e11744.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ruggiu M et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature. 1997;389(6646):73–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Okada H et al. Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. PLoS Genet. 2008;4(2):e26.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Arao Y et al. Transactivating function (AF) 2-mediated AF-1 activity of estrogen receptor alpha is crucial to maintain male reproductive tract function. Proc Natl Acad Sci U S A. 2012;109(51):21140–5.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Hess RA, Bunick D, Bahr J. Oestrogen, its receptors and function in the male reproductive tract - a review. Mol Cell Endocrinol. 2001;178(1-2):29–38.PubMedCrossRefGoogle Scholar
  120. 120.
    Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Bouhallier F et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16(4):720–31.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Liang X et al. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One. 2012;7(3):e33861.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Smorag L et al. MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biol Cell. 2012;104(11):677–92.PubMedCrossRefGoogle Scholar
  124. 124.
    Comazzetto S et al. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci. PLoS Genet. 2014;10(10):e1004597.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Liu WM et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109(2):490–4.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Krawetz SA et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26(12):3401–12.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73(3):427–33.PubMedCrossRefGoogle Scholar
  128. 128.
    Liu T et al. MicroRNA-122 influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression. Stem Cells Dev. 2013;22(12):1839–50.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wu W, Qin Y, Li Z, Dong J, Dai J, Lu C, Guo X, Zhao Y, Zhu Y, Zhang W, Hang B, Sha J, Shen H, Xia Y, Hu Z, Wang X. Genome-wide microRNA expression profiling in idiopathic non-obstructive azoospermia: significant up-regulation of miR-141, miR-429 and miR-7-1-3p. Hum Reprod. 2013;28(7):1827–36.Google Scholar
  130. 130.
    Obholz KL et al. FNDC3A is required for adhesion between spermatids and Sertoli cells. Dev Biol. 2006;298(2):498–513.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Meng X et al. Genetic deficiency of mtdh gene in mice causes male infertility via impaired spermatogenesis and alterations in the expression of small non-coding RNAs. J Biol Chem. 2015;290(19):11853–64.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Klaver R, Gromoll J. Bringing epigenetics into the diagnostics of the andrology laboratory: challenges and perspectives. Asian J Androl. 2014;16(5):669–74.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Huang Y et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One. 2010;5(1):e8888.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Yu M et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149(6):1368–80.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Booth MJ et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc. 2013;8(10):1841–51.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Medical BiologyOndokuz Mayis UniversitySamsunTurkey
  2. 2.Health Sciences Institute, Department of Multidisciplinary Molecular MedicineOndokuz Mayis UniversitySamsunTurkey
  3. 3.Faculty of Medicine, Department of UrologyOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations