Advertisement

Molecular analysis of DNA in blastocoele fluid using next-generation sequencing

  • Yixin Zhang
  • Na Li
  • Li Wang
  • Huiying Sun
  • Minyue Ma
  • Hui Wang
  • Xiaofei Xu
  • Wenke Zhang
  • Yingyu Liu
  • David S. Cram
  • Baofa SunEmail author
  • Yuanqing YaoEmail author
Embryo Biology

Abstract

Background

Preimplantation genetic testing (PGT) requires an invasive biopsy to obtain embryonic material for genetic analysis. The availability of a less invasive procedure would increase the overall efficacy of PGT. The aim of the study was to explore the potential of blastocoele fluid (BF) as an alternative source of embryonic DNA for PGT.

Methods

Collection of BF was performed by aspiration with a fine needle prior to vitrification. BF DNA was subjected to whole-genome amplification (WGA) and analyzed by high-resolution next-generation sequencing (NGS).

Results

A high-quality WGA product was obtained from 8 of 11 (72.7 %) samples. Comparison of matching BF and blastomere samples showed that the genomic representation of sequencing reads was consistently similar with respect to density and regional coverage across the 24 chromosomes. A genome-wide survey of the sample sequencing data also indicated that BF was highly representative of known single gene sequences, and this observation was validated by PCR analyses of ten randomly selected genes, with an overall efficiency of 84 %.

Conclusion

This study provides further evidence that BF is a promising alternative source of DNA for PGT.

Keywords

Blastocoele fluid Blastomere Next-generation sequencing Preimplantation genetic testing Bioinformatics 

Notes

Acknowledgments

The study was supported by the grant awarded to Yuanqing Yao by the Key Program of the “Twelfth Five-Year Plan” of the People’s Liberation Army (No. BWS11J058) and the National High Technology Research and Development Program (2015AA020402).

Compliance with ethical standards

Ethical approval

This study was approved by the Institutional Review Board of Chinese PLA General Hospital (S2013-092-02). All embryos donated to research were obtained after obtaining informed written consent by couples undertaking PGS.

Supplementary material

10815_2016_667_Fig7_ESM.gif (66 kb)
Figure S1

(GIF 66 kb)

10815_2016_667_MOESM1_ESM.tif (853 kb)
High resolution image (TIF 852 kb)
10815_2016_667_MOESM2_ESM.docx (28 kb)
Table S1 (DOCX 27 kb)

References

  1. 1.
    Brezina PR, Brezina DS, Kearns WG. Preimplantation genetic testing. BMJ. 2012;345, e5908. doi: 10.1136/bmj.e5908.CrossRefPubMedGoogle Scholar
  2. 2.
    Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. BMJ. 2015;350:g7611. doi: 10.1136/bmj.g7611.CrossRefPubMedGoogle Scholar
  3. 3.
    Yan L, Wei Y, Huang J, Zhu X, Shi X, Xia X, et al. Advances in preimplantation genetic diagnosis/screening. Sci Chin Life Sci. 2014;57(7):665–71. doi: 10.1007/s11427-014-4683-5.CrossRefGoogle Scholar
  4. 4.
    Brezina PR, Ke RW, Kutteh WH. Preimplantation genetic screening: a practical guide. Clin Med Insights Reprod Health. 2013;7:37–42. doi: 10.4137/CMRH.S10852.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Simpson JL. Preimplantation genetic diagnosis at 20 years. Prenat Diagn. 2010;30(7):682–95. doi: 10.1002/pd.2552.CrossRefPubMedGoogle Scholar
  6. 6.
    SenGupta SB, Delhanty JD. Preimplantation genetic diagnosis: recent triumphs and remaining challenges. Expert Rev Mol Diagn. 2012;12(6):585–92. doi: 10.1586/erm.12.61.CrossRefPubMedGoogle Scholar
  7. 7.
    Milachich T. New advances of preimplantation and prenatal genetic screening and noninvasive testing as a potential predictor of health status of babies. BioMed Res Int. 2014;2014:306505. doi: 10.1155/2014/306505.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fiorentino F, Biricik A, Nuccitelli A, De Palma R, Kahraman S, Sertyel S, et al. Rapid protocol for pre-conception genetic diagnosis of single gene mutations by first polar body analysis: a possible solution for the Italian patients. Prenat Diagn. 2008;28(1):62–4. doi: 10.1002/pd.1905.CrossRefPubMedGoogle Scholar
  9. 9.
    Capalbo A, Bono S, Spizzichino L, Biricik A, Baldi M, Colamaria S, et al. Reply: questions about the accuracy of polar body analysis for preimplantation genetic screening. Hum Reprod. 2013;28(6):1733–6. doi: 10.1093/humrep/det070.CrossRefPubMedGoogle Scholar
  10. 10.
    Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human oocytes. Cell. 2013;155(7):1492–506. doi: 10.1016/j.cell.2013.11.040.CrossRefPubMedGoogle Scholar
  11. 11.
    Salvaggio CN, Forman EJ, Garnsey HM, Treff NR, Scott Jr RT. Polar body based aneuploidy screening is poorly predictive of embryo ploidy and reproductive potential. J Assist Reprod Genet. 2014;31(9):1221–6. doi: 10.1007/s10815-014-0293-1.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dahdouh EM, Balayla J, Audibert F, Wilson RD, Audibert F, Brock JA, et al. Technical update: preimplantation genetic diagnosis and screening. J Obstet Gynaecol Can: JOGC = J D’obstet Gynecol Du Can: JOGC. 2015;37(5):451–63.Google Scholar
  13. 13.
    Scott KL, Hong KH, Scott Jr RT. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100(3):608–14. doi: 10.1016/j.fertnstert.2013.07.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Scott Jr RT, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30. doi: 10.1016/j.fertnstert.2013.04.039.CrossRefPubMedGoogle Scholar
  15. 15.
    Goossens V, De Rycke M, De Vos A, Staessen C, Michiels A, Verpoest W, et al. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod. 2008;23(3):481–92. doi: 10.1093/humrep/dem327.CrossRefPubMedGoogle Scholar
  16. 16.
    Mukaida T, Oka C, Goto T, Takahashi K. Artificial shrinkage of blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts. Hum Reprod. 2006;21(12):3246–52. doi: 10.1093/humrep/del285.CrossRefPubMedGoogle Scholar
  17. 17.
    Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, et al. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26(6):603–10. doi: 10.1016/j.rbmo.2013.02.012.CrossRefPubMedGoogle Scholar
  18. 18.
    Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102(6):1692–9. doi: 10.1016/j.fertnstert.2014.08.021. e6.CrossRefPubMedGoogle Scholar
  19. 19.
    Magli MC, Pomante A, Cafueri G, Valerio M, Crippa A, Ferraretti AP, et al. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2015. doi: 10.1016/j.fertnstert.2015.11.018.Google Scholar
  20. 20.
    Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25. doi: 10.1016/j.fertnstert.2015.04.028.CrossRefPubMedGoogle Scholar
  21. 21.
    Cohen J, Grudzinskas G, Johnson MH. Embryonic DNA sampling without biopsy: the beginnings of non-invasive PGD? Reprod Biomed Online. 2013;26(6):520–1. doi: 10.1016/j.rbmo.2013.03.001.CrossRefPubMedGoogle Scholar
  22. 22.
    Liang D, Lv W, Wang H, Xu L, Liu J, Li H, et al. Non-invasive prenatal testing of fetal whole chromosome aneuploidy by massively parallel sequencing. Prenat Diagn. 2013;33(5):409–15. doi: 10.1002/pd.4033.CrossRefPubMedGoogle Scholar
  23. 23.
    Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Lukaszuk K, Pukszta S, Wells D, Cybulska C, Liss J, Plociennik L, et al. Routine use of next-generation sequencing for preimplantation genetic diagnosis of blastomeres obtained from embryos on day 3 in fresh in vitro fertilization cycles. Fertil Steril. 2015;103(4):1031–6. doi: 10.1016/j.fertnstert.2014.12.123.CrossRefPubMedGoogle Scholar
  25. 25.
    Chang LJ, Huang CC, Tsai YY, Hung CC, Fang MY, Lin YC, et al. Blastocyst biopsy and vitrification are effective for preimplantation genetic diagnosis of monogenic diseases. Hum Reprod. 2013;28(5):1435–44. doi: 10.1093/humrep/det048.CrossRefPubMedGoogle Scholar
  26. 26.
    Vanderzwalmen P, Bertin G, Debauche C, Standaert V, van Roosendaal E, Vandervorst M, et al. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod. 2002;17(3):744–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Hardy K, Handyside AH, Winston RM. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development. 1989;107(3):597–604.PubMedGoogle Scholar
  28. 28.
    Hardy K, Stark J, Winston RM. Maintenance of the inner cell mass in human blastocysts from fragmented embryos. Biol Reprod. 2003;68(4):1165–9. doi: 10.1095/biolreprod.102.010090.CrossRefPubMedGoogle Scholar
  29. 29.
    Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci U S A. 2015;112(11):3178–9. doi: 10.1073/pnas.1501321112.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20(4):571–81. doi: 10.1093/humupd/dmu016.CrossRefPubMedGoogle Scholar
  31. 31.
    Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Sci (New York, NY). 2012;338(6114):1622–6. doi: 10.1126/science.1229164.CrossRefGoogle Scholar
  32. 32.
    Liu D, Liu C, DeVries S, Waldman F, Cote RJ, Datar RH. LM-PCR permits highly representative whole genome amplification of DNA isolated from small number of cells and paraffin-embedded tumor tissue sections. Diagn Mol Pathol: Am J Surg Pathol, Part B. 2004;13(2):105–15.CrossRefGoogle Scholar
  33. 33.
    Lam CW, Mak CM. Allele dropout caused by a non-primer-site SNV affecting PCR amplification—a call for next-generation primer design algorithm. Clinica Chimica Acta. Int J Clin Chem. 2013;421:208–12. doi: 10.1016/j.cca.2013.03.014.Google Scholar
  34. 34.
    Natesan SA, Bladon AJ, Coskun S, Qubbaj W, Prates R, Munne S, et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med: Off J Am Coll Med Genet. 2014;16(11):838–45. doi: 10.1038/gim.2014.45.CrossRefGoogle Scholar
  35. 35.
    Gimenez C, Sarasa J, Arjona C, Vilamajo E, Martinez-Pasarell O, Wheeler K, et al. Karyomapping allows preimplantation genetic diagnosis of a de-novo deletion undetectable using conventional PGD technology. Reprod Biomed Online. 2015;31(6):770–5. doi: 10.1016/j.rbmo.2015.08.017.CrossRefPubMedGoogle Scholar
  36. 36.
    Konstantinidis M, Prates R, Goodall NN, Fischer J, Tecson V, Lemma T, et al. Live births following Karyomapping of human blastocysts: experience from clinical application of the method. Reprod Biomed Online. 2015;31(3):394–403. doi: 10.1016/j.rbmo.2015.05.018.CrossRefPubMedGoogle Scholar
  37. 37.
    Berger VK, Baker VL. Preimplantation diagnosis for single gene disorders. Semin Reprod Med. 2014;32(2):107–13. doi: 10.1055/s-0033-1363552.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang L, Cram DS, Shen J, Wang X, Zhang J, Song Z, et al. Validation of copy number variation sequencing for detecting chromosome imbalances in human preimplantation embryos. Biol Reprod. 2014;91(2):37. doi: 10.1095/biolreprod.114.120576.CrossRefPubMedGoogle Scholar
  39. 39.
    D’Alessandro A, Federica G, Palini S, Bulletti C, Zolla L. A mass spectrometry-based targeted metabolomics strategy of human blastocoele fluid: a promising tool in fertility research. Mol BioSyst. 2012;8(4):953–8. doi: 10.1039/c1mb05358b.CrossRefPubMedGoogle Scholar
  40. 40.
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.CrossRefGoogle Scholar
  41. 41.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. doi: 10.1093/bioinformatics/btq033.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yixin Zhang
    • 1
    • 2
  • Na Li
    • 3
  • Li Wang
    • 2
    • 4
  • Huiying Sun
    • 5
  • Minyue Ma
    • 2
  • Hui Wang
    • 2
  • Xiaofei Xu
    • 2
  • Wenke Zhang
    • 2
  • Yingyu Liu
    • 2
  • David S. Cram
    • 6
  • Baofa Sun
    • 5
    Email author
  • Yuanqing Yao
    • 2
    Email author
  1. 1.School of MedicineNankai UniversityTianjinChina
  2. 2.Department of Obstetrics and GynecologyChinese PLA General HospitalBeijingChina
  3. 3.Department of Obstetrics and GynecologyAffiliated Hospital of Academy of Military Medical SciencesBeijingChina
  4. 4.Center for Reproductive MedicineThe First Hospital of KunmingKunmingChina
  5. 5.Beijing Institute of GenomicsChinese Academy of SciencesBeijingChina
  6. 6.Berry Genomics, Co., Ltd.BeijingChina

Personalised recommendations