Skip to main content
Log in

Artificial shrinkage of blastocoel using a laser pulse prior to vitrification improves clinical outcome

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Blastocysts contain a large amount of fluid in the blastocoel, which may pose a risk for ice crystal formation during vitrification. This study aimed to evaluate the effectiveness of laser-induced artificial shrinkage of blastocoel before vitrification on clinical outcome.

Methods

Patients were divided into two groups: a control group with untreated, expanded blastocysts (n = 115) and a study group with blastocoel artificially eliminated by a laser pulse prior to vitrification (n = 309). Blastocyst survival, clinical pregnancy, and implantation rates were compared.

Result(s)

The survival rate was significantly higher in the study group compared with the control group (97.3 and 74.9 %, respectively; p > 0.01). The clinical pregnancy and implantation rates of the study group were significantly higher (p < 0.01) than that of the control group (clinical pregnancy, 67.2 vs. 41.1 %; implantation, 39.1 vs. 24.5 %.

Conclusion(s)

This study demonstrated that the removal of blastocoel fluid before vitrification by laser pulse of in vitro-produced human blastocysts significantly improves blastocyst survival, clinical pregnancy, and implantation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;26:707–9.

    Article  Google Scholar 

  2. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984;42:293–6.

    CAS  PubMed  Google Scholar 

  3. Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I, et al. Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil Steril. 2008;90(1):186–93.

    Article  PubMed  Google Scholar 

  4. Sullivan EA, Zegers-Hochschild F, Mansour R, Ishihara O, Mouzon J, Nygren KG, et al. International Committee for Monitoring Assisted Reproductive Technologies (ICMART) world report: assisted reproductive technology 2004. Hum Reprod. 2013;28(5):1375–90.

    Article  CAS  PubMed  Google Scholar 

  5. Camus M. Human embryo cryopreservation: review of clinical issues related to the success rate. Proceedings of Symposium on “Cryobiology and Cryopreservation on Human Gametes and Embryos” ESHRE Campus 2004. Brussels, Belgium, 12th to 13th March 2004; 24–26.

  6. AbdelHafez FF, Desai N, Abou-Setta AM, Falcone T, Goldfarb J. Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod Biomed Online. 2010;20(2):209–22.

    Article  PubMed  Google Scholar 

  7. Vajta G, Kuwayama M. Improving cryopreservation systems. Theriogenology. 2006;65:236–44.

    Article  CAS  PubMed  Google Scholar 

  8. Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online. 2006;12(6):779–96.

    Article  PubMed  Google Scholar 

  9. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, et al. A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod. 2008;23(9):1976–82.

    Article  CAS  PubMed  Google Scholar 

  10. Kasai M, Mukaida T. Cryopreservation of animal and human embryos by vitrification. Reprod Biomed Online. 2004;9:164–70.

    Article  CAS  PubMed  Google Scholar 

  11. Kader AA, Choi A, Orief Y, Agarwal A. Factors affecting the outcome of human blastocyst vitrification. Reprod Biol Endocrinol. 2009;7:99.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pavone ME, Innes J, Hirshfeld-Cytron J, Kazer R, Zhang J. Comparing thaw survival, implantation and live birth rates from cryopreserved zygotes, embryos and blastocysts. J Hum Reprod Sci. 2011;4:23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salumets A, Tuuri T, Mäkinen S, Vilska S, Husu L, Tainio R, et al. Effect of developmental stage of embryo at freezing on pregnancy outcome of frozen–thawed embryo transfer. Hum Reprod. 2003;18:1890–5.

    Article  PubMed  Google Scholar 

  14. Noyes N, Reh A, McCaffrey C, Tan O, Krey L. Impact of developmental stage at cryopreservation and transfer on clinical outcome of frozen embryo cycles. Reprod Biomed Online. 2009;19:9–15.

    Article  PubMed  Google Scholar 

  15. Surrey E, Keller J, Stevens J, Gustofson R, Minjarez D, Schoolcraft W. Freeze-all: enhanced outcomes with cryopreservation at the blastocyst stage versus pronuclear stage using slow-freeze techniques. Reprod Biomed Online. 2010;21:411–7.

    Article  PubMed  Google Scholar 

  16. Al-Hasani S, Ozmen B, Koutlaki N, Schoepper B, Diedrich K, Schultze-Mosgau A. Three years of routine vitrification of human zygotes: is it still fair to advocate slow-rate freezing? Reprod Biomed Online. 2007;14:288–93.

    Article  PubMed  Google Scholar 

  17. Liebermann J, Tucker MJ, Graham JR, Han T, Davis A, Levy MJ. Blastocyst development after vitrification of multipronucleate zygotes using the flexipet denuding pipette (FDP). Reprod Biomed Online. 2002;4:146–50.

    Article  CAS  PubMed  Google Scholar 

  18. Jelinkova L, Selman HA, Arav A, Strehler E, Reeka N, Sterzik K. Twin pregnancy after vitrification of 2-pronuclei human embryos. Fertil Steril. 2002;77:412–4.

    Article  PubMed  Google Scholar 

  19. Hoover L, Baker A, Check JH, Lurie D, Summers D. Clinical outcome of cryopreserved human pronuclear stage embryos resulting from intracytoplasmic sperm injection. 1997; 67(4): 621–624

  20. El-Danasouri I, Selman H. Successful pregnancies and deliveries after a simple vitrification protocol for day 3 human embryos. Fertil Steril. 2001;76:400–2.

    Article  CAS  PubMed  Google Scholar 

  21. Mukaida T, Wada S, Takahashi K, Pedro PB, An TZ, Kasai M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod. 1998;13:2874–9.

    Article  CAS  PubMed  Google Scholar 

  22. Liebermann J. Vitrification of human blastocysts: an update. Reprod Biomed Online. 2009;19:105–14.

    Article  Google Scholar 

  23. Liebermann J, Tucker MJ. Comparison of vitrification and conventional cryopreservation of day 5 and day 6 blastocysts during clinical application. Fertil Steril. 2006;86(1):20–6.

    Article  PubMed  Google Scholar 

  24. Reed ML, Lane M, Gardner DK, Jensen NL, Thompson J. Vitrification of human blastocysts using the Cryoloop method: successful clinical application and birth of offspring. J Assist Reprod Genet. 2002;19:304–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Al-Azawia T, Tavukcuoglua S, Khakib AA, Al HS. Current data on the vitrification of human embryos: which one is the best; zygote, cleavage or blastocyst stage? Middle East Fertil Soc J. 2013;18:223–32.

    Article  Google Scholar 

  26. Vanderzwalmen P, Bertin G, Debauche C, Standaert V, van Roosendaal E, Vandervorst M, et al. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod. 2002;17:744–51.

    Article  PubMed  Google Scholar 

  27. Mukaida T, Oka C, Goto T, Takahashi K. Artificial shrinkage of blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts. Hum Reprod. 2006;21:3246–52.

    Article  CAS  PubMed  Google Scholar 

  28. Cho HJ, Son WY, Yoon SH, Lee SW, Lim JH. An improved protocol for dilution of cryoprotectants from vitrified human blastocysts. Hum Reprod. 2002;17:2419–22.

    Article  CAS  PubMed  Google Scholar 

  29. Chen SU, Lee TH, Lien YR, Tsai YY, Chang LJ, Yang YS. Microsuction of blastocoelic fluid before vitrification increased survival and pregnancy of mouse expanded blastocysts, but pretreatment with the cytoskeletal stabilizer did not increase blastocyst survival. Fertil Steril. 2005;84:1156–62.

    Article  PubMed  Google Scholar 

  30. Desai N, Szeptycki J, Scott M, AbdelHafez FF, Goldfarb J. Artificial collapse of blastocysts before vitrification: mechanical vs. laser technique and effect on survival, cell number, and cell death in early and expanded blastocysts. Cell Preserv Technol. 2008;6:181–90.

    Article  Google Scholar 

  31. Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH. Pregnancy outcome following transfer of human blastocysts vitrified on electron microscopy grids after induced collapse of the blastocoele. Hum Reprod. 2003;18:137–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hiraoka K, Kinutani M, Kinutani K. Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts. Hum Reprod. 2004;19(12):2884–8.

    Article  PubMed  Google Scholar 

  33. Kader A, Sharma RK, Falcone T, Agarwal A. Mouse blastocyst previtrification interventions and DNA integrity. Fertil Steril. 2010;93(5):1518–25.

    Article  CAS  PubMed  Google Scholar 

  34. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Toward reproductive certainty: fertility and genetics beyond 1999. UK: Parthenon Publishing London; 1999. p. 378–88.

    Google Scholar 

  35. Taylor T, Gilchrist J, Hallowell S, Hanshew K, Orris J, Glassner M, et al. The effects of different laser pulse lengths on the embryo biopsy procedure and embryo development to the blastocyst stage. J Assist Reprod Genet. 2010;27:663–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abdelmassih S, Cardoso J, Abdelmassih V, Dias JA, Abdelmassih R, Nagy ZP. Laser-assisted ICSI: a novel approach to obtain higher oocyte survival and embryo quality rates. Hum Reprod. 2002;17(10):2694–9.

    Article  CAS  PubMed  Google Scholar 

  37. Berns M, Salet C. Laser microbeams for partial cell irradiation. Int Rev Cytol. 1972;33:131–54.

    Article  CAS  PubMed  Google Scholar 

  38. Berns M. A possible two-photon effect in vitro using a focused laser beam. Biophys J. 1976;16:973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao S, Zhao C, Zhang J, Wu X, Guo X, Ling X. Retrospective clinical analysis of two artificial shrinkage methods applied prior to blastocyst vitrification on the outcome of frozen embryo transfer. J Assist Reprod Genet. 2014;31(5):577–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Iwayama H, Hochi S, Yamashita M. In vitro and in vivo viability of human blastocysts collapsed by laser pulse or osmotic shock prior to vitrification. J Assist Reprod Genet. 2011;28(4):355–61.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank TopLab Company for financial support (Grant no. 001005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin Magdi.

Additional information

Capsule This study demonstrated that the removal of blastocoel fluid before vitrification by laser pulse of in vitro-produced human blastocysts significantly improves blastocyst survival, clinical pregnancy, and implantation rates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwish, E., Magdi, Y. Artificial shrinkage of blastocoel using a laser pulse prior to vitrification improves clinical outcome. J Assist Reprod Genet 33, 467–471 (2016). https://doi.org/10.1007/s10815-016-0662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0662-z

Keywords

Navigation