Journal of Assisted Reproduction and Genetics

, Volume 33, Issue 3, pp 413–421 | Cite as

A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study

  • Aila Coello
  • Pilar Campos
  • José Remohí
  • Marcos Meseguer
  • Ana Cobo
Technological Innovations



This study aimed to determine whether the new formulation of vitrification solutions containing a combination of hydroxypropyl cellulose (HPC) and trehalose does not affect outcomes in comparison with using conventional solutions made of serum substitute supplement (SSS) and sucrose.


Ovum donation cycles were retrospectively compared regarding the solution used for vitrification and warming of human oocytes. The analysis included 218 cycles (N = 2532 oocytes) in the study group (HPC + trehalose) and 214 cycles (N = 2353 oocytes) in the control group (SSS + sucrose).


No statistical differences were found in ovarian stimulation parameters and baseline characteristics of donors and recipients. The survival rate was 91.3 % (95 % confidence interval (CI) = 89.8–92.9) in the HPC + trehalose group vs. 92.1 % (95 % CI = 90.4–93.7) in the SSS + sucrose group (NS). The implantation rate (42.8 %, 95 % CI = 37.7–47.9 vs. 41.2 %, 95 % CI = 36.0–46.4), clinical pregnancy rate (CPR) per transfer (60.7 %, 95 % CI = 53.9–67.5 vs. 56.4 %, 95 % CI = 49.3–63.5), and ongoing pregnancy rate (OPR) per transfer (48.5 %, 95 % CI = 41.5–55.5 vs. 46.3 %, 95 % CI = 39.2–53.4) were similar for patients who received either HPC + trehalose-vitrified oocytes or SSS + sucrose-vitrified oocytes. Statistical differences were found when analyzing blastocyst rate both per injected oocyte (30.2 %, 95 % CI = 28.3–32.1 vs. 24.1 %, 95 % CI = 22.3–25.9) and per fertilized oocyte (40.8 %, 95 %CI = 38.5–43.1 vs. 33.2 %, 95 % CI = 30.8–35.5) (P < 0.0001). Delivery rate was comparable between groups (37.2 %, 95 % CI = 30.8–46.6 vs. 36.9 %, 95 % CI = 30.4–43.4; NS).


Our data demonstrate that HPC and trehalose are suitable and safe substitutes for serum and sucrose. Therefore, the new commercial media can be used efficiently in the vitrification of human oocytes avoiding viral and endotoxin contamination risk.


Hydroxypropyl cellulose Macromolecular supplement Oocyte vitrification Survival rate Clinical outcome 



The authors wish to thank the clinical embryologists and laboratory technicians of IVI, Valencia.


  1. 1.
    Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008;89:1657–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, et al. Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod. 2010;25:66–73.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25:2239–46.CrossRefPubMedGoogle Scholar
  4. 4.
    Noyes N, Knopman JM, Melzer K, Fino ME, Friedman B, Westphal LM. Oocyte cryopreservation as a fertility preservation measure for cancer patients. Reprod Biomed Online. 2011;23:323–33.CrossRefPubMedGoogle Scholar
  5. 5.
    Cobo A, Domingo J, Perez S, Crespo J, Remohi J, Pellicer A. Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol. 2008;10:268–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Stoop D, Nekkebroeck J, Devroey P. A survey on the intentions and attitudes towards oocyte cryopreservation for non-medical reasons among women of reproductive age. Hum Reprod. 2011;26:655–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Cobo A, Garrido N, Crespo J, Jose R, Pellicer A. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online. 2012;24:424–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Song WY, Sun YP, Jin HX, Xin ZM, Su YC, Chian RC. Clinical outcome of emergency egg vitrification for women when sperm extraction from the testicular tissues of the male partner is not successful. Syst Biol Reprod Med. 2011;57:210–3.CrossRefPubMedGoogle Scholar
  9. 9.
    Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med. 2009;27:450–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Herrero L, Pareja S, Losada C, Cobo AC, Pellicer A, Garcia-Velasco JA. Avoiding the use of human chorionic gonadotropin combined with oocyte vitrification and GnRH agonist triggering versus coasting: a new strategy to avoid ovarian hyperstimulation syndrome. Fertil Steril. 2011;95:1137–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Seki S, Mazur P. Ultra-rapid warming yields high survival of mouse oocytes cooled to −196 degrees c in dilutions of a standard vitrification solution. PLoS One. 2012;7:e36058.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature. 1985;313:573–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Weathersbee PS, Pool TB, Ord T. Synthetic serum substitute (SSS): a globulin-enriched protein supplement for human embryo culture. J Assist Reprod Genet. 1995;12:354–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Inoue F. Hydroxypropyl cellulose as a macromolecular supplement for cryopreservation of bovine oocytes and blastocysts and human oocytes. Low Temp Med. 2012;38.Google Scholar
  15. 15.
    Strom AR, Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol. 1993;8:205–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Behm CA. The role of trehalose in the physiology of nematodes. Int J Parasitol. 1997;27:215–29.CrossRefPubMedGoogle Scholar
  17. 17.
    Hengherr S, Heyer AG, Kohler HR, Schill RO. Trehalose and anhydrobiosis in tardigrades—evidence for divergence in responses to dehydration. FEBS J. 2008;275:281–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Vanin S, Bubacco L, Beltramini M. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects. Cryo Lett. 2008;29:485–91.Google Scholar
  19. 19.
    Weber AP, Horst RJ, Barbier GG, Oesterhelt C. Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol. 2007;256:1–34.CrossRefPubMedGoogle Scholar
  20. 20.
    McWilliams RB, Gibbons WE, Leibo SP. Osmotic and physiological responses of mouse zygotes and human oocytes to mono- and disaccharides. Hum Reprod. 1995;10:1163–71.PubMedGoogle Scholar
  21. 21.
    Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod. 2009;80:70–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Honadel TE, Killian GJ. Cryopreservation of murine embryos with trehalose and glycerol. Cryobiology. 1988;25:331–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang XB, Li K, Yau KH, Tsang KS, Fok TF, Li CK, et al. Trehalose ameliorates the cryopreservation of cord blood in a preclinical system and increases the recovery of CFUs, long-term culture-initiating cells, and nonobese diabetic-SCID repopulating cells. Transfusion. 2003;43:265–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Bellver J, Ayllon Y, Ferrando M, Melo M, Goyri E, Pellicer A, et al. Female obesity impairs in vitro fertilization outcome without affecting embryo quality. Fertil Steril. 2010;93:447–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Soares SR, Troncoso C, Bosch E, Serra V, Simon C, Remohi J, et al. Age and uterine receptiveness: predicting the outcome of oocyte donation cycles. J Clin Endocrinol Metab. 2005;90:4399–404.CrossRefPubMedGoogle Scholar
  26. 26.
    Ardoy M, Calderón G, Arroyo G, Cuadros J, Figueroa M, Herrer R. ASEBIR criteria for the morphological evaluation of human oocytes, early embryos and blastocysts. ASEBIR clinical embryology papers. 2008.Google Scholar
  27. 27.
    Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.CrossRefGoogle Scholar
  28. 28.
    Gardner DKSW. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Toward reproductive certainty: infertility and genetics beyond 1999. Carnforth: Parthenon Press; 1999.Google Scholar
  29. 29.
    Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92:1520–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Bonduelle M, Liebaers I, Deketelaere V, Derde MP, Camus M, Devroey P, et al. Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod. 2002;17:671–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Laverge H, De Sutter P, Desmet R, Van der Elst J, Dhont M. Prospective randomized study comparing human serum albumin with fetal cord serum as protein supplement in culture medium for in-vitro fertilization. Hum Reprod. 1997;12:2263–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Caro CM, Trounson A. Successful fertilization, embryo development, and pregnancy in human in vitro fertilization (IVF) using a chemically defined culture medium containing no protein. J In Vitro Fert Embryo Transf. 1986;3:215–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Kruger TF, Stander FS, Smith K, Van der Merwe JP, Lombard CJ. The effect of serum supplementation on the cleavage of human embryos. J In Vitro Fert Embryo Transf. 1987;4:10–2.CrossRefPubMedGoogle Scholar
  34. 34.
    Ogawa T, Marrs RP. The effect of protein supplementation on single-cell mouse embryos in vitro. Fertil Steril. 1987;47:156–61.PubMedGoogle Scholar
  35. 35.
    Isobe T, Ikebata Y, Onitsuka T, Do LT, Sato Y, Taniguchi M, et al. Cryopreservation for bovine embryos in serum-free freezing medium containing silk protein sericin. Cryobiology. 2013;67:184–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Alberda AT, van Os HC, Zeilmaker GH, Rothbarth PH, Heijtink RA, Schalm SW. Hepatitis B virus infection in women treated with in-vitro fertilization. Ned Tijdschr Geneeskd. 1989;133:20–5.PubMedGoogle Scholar
  37. 37.
    Gardner DK. Mammalian embryo culture in the absence of serum or somatic cell support. Cell Biol Int. 1994;18:1163–79.CrossRefPubMedGoogle Scholar
  38. 38.
    Menezo Y, Testart J, Perrone D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil Steril. 1984;42:750–5.PubMedGoogle Scholar
  39. 39.
    Adler A, Reing AM, Bedford JM, Alikani M, Cohen J. Plasmanate as a medium supplement for in vitro fertilization. J Assist Reprod Genet. 1993;10:67–71.CrossRefPubMedGoogle Scholar
  40. 40.
    Pool TB, Martin JE. High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil Steril. 1994;61:714–9.PubMedGoogle Scholar
  41. 41.
    Desai NN, Sheean LA, Martin D, Gindlesperger V, Austin CM, Lisbonna H, et al. Clinical experience with synthetic serum substitute as a protein supplement in IVF culture media: a retrospective study. J Assist Reprod Genet. 1996;13:23–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Meintjes M, Chantilis SJ, Ward DC, Douglas JD, Rodriguez AJ, Guerami AR, et al. A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod. 2009;24:782–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T. A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil. 1990;89:91–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Skaer HB, Franks F, Asquith MH, Echlin P. Polymeric cryoprotectants in the preservation of biological ultrastructure. III. Morphological aspects. J Microsc. 1977;110:257–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Gardner DK, Rodriegez-Martinez H, Lane M. Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum Reprod. 1999;14:2575–80.CrossRefPubMedGoogle Scholar
  46. 46.
    Bungum M, Humaidan P, Bungum L. Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod Biomed Online. 2002;4:233–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuwayama M. Efficiency of non-protein solutions using hydroxypropyl cellulose on survival of bovine and human oocytes and embryos after vitrification. Fertil Steril. 2013;10:S174.CrossRefGoogle Scholar
  48. 48.
    Mori C, Yabuuchi A, Ezoe K, Murata N, Takayama Y, Okimura T, et al. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies. Reprod Biomed Online. 2015;30:613–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Golovina EA, Golovin AV, Hoekstra FA, Faller R. Water replacement hypothesis in atomic detail—factors determining the structure of dehydrated bilayer stacks. Biophys J. 2009;97:490–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Aila Coello
    • 1
  • Pilar Campos
    • 1
  • José Remohí
    • 1
  • Marcos Meseguer
    • 1
  • Ana Cobo
    • 1
  1. 1.Instituto Valenciano de Infertilidad (IVI)University of ValenciaValenciaSpain

Personalised recommendations