Skip to main content
Log in

Association of polymorphisms in tektin-t gene with idiopathic asthenozoospermia in Sichuan, China

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this research was to study the association between the single nucleotide polymorphisms (SNPs) of the tektin-t gene and idiopathic asthenozoospermia.

Methods

We conducted sequence analyses of the tektin-t gene in 104 idiopathic asthenozoospermia and 102 fertile men with normospermic parameters in Sichuan, China.

Results

In this study, we found that allele 136 T (odds ratio [OR] 1.745, 95 % confidence interval [CI] 1.146–2.655, P = 0.009) was significantly increased in idiopathic asthenozoospermic patients compared with fertile men. This mutation substitutes a highly conserved arginine at position 46 to cysteine. Moreover, PolyPhen-2 analysis predicted that this variant was “probably damaging”. In addition, a novel heterozygous mutation, R207H (c.620G >A), was detected in five asthenozoospermic patients, while there was no detection of this genotype among the fertile candidates, indicating that the mutation was located within a conserved domain predicted by PolyPhen-2 analysis as “probably damaging” to the protein.

Conclusions

These results suggested that tektin-t variants (Arg/Cys + Cys/Cys) were probably one of the high risk genetic factors for idiopathic asthenozoospermia among males in Sichuan, China, while the R207H polymorphism may be associated with idiopathic asthenozoospermia risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huynh T, Mollard R, Trounson A. Selected genetic factors associated with male infertility. Hum Reprod Update. 2002;8(2):183–98.

    Article  PubMed  Google Scholar 

  2. De Kretser D, Baker H. Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab. 1999;84(10):3443–50.

    PubMed  Google Scholar 

  3. Asero P, Calogero AE, Condorelli RA, Mongioi L, Vicari E, Lanzafame F, et al. Relevance of genetic investigation in male infertility. J Endocrinol Investig. 2014;37(5):415–27.

    Article  CAS  Google Scholar 

  4. Curi S, Ariagno J, Chenlo P, Mendeluk G, Pugliese M, Sardi Segovia L, et al. Asthenozoospermia: analysis of a large population. Syst Biol Reprod Med. 2003;49(5):343–9.

    CAS  Google Scholar 

  5. Linck RW, Albertini DF, Kenney DM, Langevin GL. Tektin filaments: chemically unique filaments of sperm flagellar microtubules. Prog Clin Biol Res. 1982;80:127–32.

    CAS  PubMed  Google Scholar 

  6. Linck RW, Amos LA, Amos WB. Localization of tektin filaments in microtubules of sea-urchin sperm flagella by immunoelectron microscopy. J Cell Biol. 1985;100(1):126–35.

    Article  CAS  PubMed  Google Scholar 

  7. Norrander JM, Amos LA, Linck RW. Primary structure of tektin A1: comparison with intermediate filament proteins and a model for its association with tubulin. Proc Natl Acad Sci U S A. 1992;89:8567–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen R, Perrone CA, Amos LA, Linck RW. Tektin B1 from ciliary microtubules - primary structure as deduced from the cDNA sequence and comparison with tektin A1. J Cell Sci. 1993;106:909–18.

    PubMed  Google Scholar 

  9. Norrander JM, Perrone CA, Amos LA, Linck RW. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules. J Mol Biol. 1996;257(2):385–97.

    Article  CAS  PubMed  Google Scholar 

  10. Setter PW, Malvey-Dorn E, Steffen W, Stephens RE, Linck RW. Tektin interactions and a model for molecular functions. Exp Cell Res. 2006;312(15):2880–96.

    Article  CAS  PubMed  Google Scholar 

  11. Roy A, Yan W, Burns KH, Matzuk MM. Tektin3 encodes an evolutionarily conserved putative testicular microtubules-related protein expressed preferentially in male germ cells. Mol Reprod Dev. 2004;67(3):295–302.

    Article  CAS  PubMed  Google Scholar 

  12. Roy A, Lin Y-N, Agno JE, DeMayo FJ, Matzuk MM. Tektin 3 is required for progressive sperm motility in mice. Mol Reprod Dev. 2009;76(5):453–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Takiguchi H, Murayama E, Kaneko T, Kurio H, Toshimori K, Iida H. Characterization and subcellular localization of Tektin 3 in rat spermatozoa. Mol Reprod Dev. 2011;78(8):611–20.

    Article  CAS  PubMed  Google Scholar 

  14. Roy A, Lin YN, Agno JE, DeMayo FJ, Matzuk MM. Absence of tektin 4 causes asthenozoospermia and subfertility in male mice. FASEB J. 2007;21(4):1013–25.

    Article  CAS  PubMed  Google Scholar 

  15. Cao W, Ijiri TW, Huang AP, Gerton GL. Characterization of a novel tektin member, TEKT5, in mouse sperm. J Androl. 2011;32(1):55–69.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol. 2004;24(18):7958–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bhilawadikar R, Zaveri K, Mukadam L, Naik S, Kamble K, Modi D, et al. Levels of Tektin 2 and CatSper 2 in normozoospermic and oligoasthenozoospermic men and its association with motility, fertilization rate, embryo quality and pregnancy rate. J Assist Reprod Genet. 2013;30(4):513–23.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Iguchi N, Tanaka H, Fujii T, Tamura K, Kaneko Y, Nojima H, et al. Molecular cloning of haploid germ cell-specific tektin cDNA and analysis of the protein in mouse testis. FEBS Lett. 1999;456:315–21.

    Article  CAS  PubMed  Google Scholar 

  19. Iguchi N, Tanaka H, Nakamura Y, Nozaki M, Fujiwara T, Nishimune Y. Cloning and characterization of the human tektin-t gene. Mol Hum Reprod. 2002;8(6):525–30.

    Article  CAS  PubMed  Google Scholar 

  20. Wolkowicz MJ, Naaby-Hansen S, Gamble AR, Reddi PP, Flickinger CJ, Herr JC. Tektin B1 demonstrates flagellar localization in human sperm. Biol Reprod. 2002;66(1):241–50.

    Article  CAS  PubMed  Google Scholar 

  21. WHO. WHO laboratory manual for the examination and processing of human semen. Geneva: World Health Organization; 2010.

    Google Scholar 

  22. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20.

  24. Hull MGR, Clazener CMA, Kelly NJ, Conway DI, Foster PA, Hinton RA, et al. Population study of cases, treatment, and outcome of infertility. Br Med J. 1985;291:1693–7.

    Article  CAS  Google Scholar 

  25. Narayan D, Krishnan SN, Upender M, Ravikumar TS, Mahoney MJ, Dolan Jr TF, et al. Unusual inheritance of primary ciliary dyskinesia (Kartagener’s syndrome). J Med Genet. 1994;31(6):493–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Yang SM, Li HB, Wang JX, Shi YC, Cheng HB, Wang W, et al. Morphological characteristics and initial genetic study of multiple morphological anomalies of the flagella in China. Asian J Androl. 2015;17(3):513–5.

    PubMed Central  PubMed  Google Scholar 

  27. Luconi M. Pathophysiology of sperm motility. Front Biosci. 2006;11(1):1433.

    Article  CAS  PubMed  Google Scholar 

  28. Chodhari R, Mitchison HM, Meeks M. Cilia, primary ciliary dyskinesia and molecular genetics. Paediatr Respir Rev. 2004;5(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  29. Linck R, Fu X, Lin J, Ouch C, Schefter A, Steffen W, et al. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2 + −binding proteins, and stable protofilaments. J Biol Chem. 2014;289(25):17427–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tanaka Y, Okada Y, Hirokawa N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature. 2005;435(7039):172–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ha Y. A tektin homologue is decreased in chlamydomonas mutants lacking an axonemal inner-arm dynein. Mol Biol Cell. 2004;15(5):2105–15.

    Article  Google Scholar 

  32. Norrander J, Larsson M, Stahl S, Hoog C, Linck R. Expression of ciliary tektins in brain and sensory development. J Neurosci. 1998;18(21):8912–8.

    CAS  PubMed  Google Scholar 

  33. Amos LA. The tektin family of microtubule-stabilizing proteins. Genome Biol. 2008;9(7):229.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Mariappa D, Aladakatti RH, Dasari SK, Sreekumar A, Wolkowicz M, van der Hoorn F, et al. Inhibition of tyrosine phosphorylation of sperm flagellar proteins, outer dense fiber protein-2 and tektin-2, is associated with impaired motility during capacitation of hamster spermatozoa. Mol Reprod Dev. 2010;77(2):182–93.

    CAS  PubMed  Google Scholar 

  35. Zuccarello D, Ferlin A, Garolla A, Pati MA, Moretti A, Cazzadore C, et al. A possible association of a human tektin-t gene mutation (A229V) with isolated non-syndromic asthenozoospermia: case report. Hum Reprod. 2008;23(4):996–1001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Affiliate Reproductive Hospital Genitalia Hygiene Research Center (Sichuan, China) for providing us with a platform for the analysis of the semen parameters, and we are grateful for the contributions of the patients and controls who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-ping Ding.

Additional information

Capsule These results suggested that tektin-t variants (Arg/Cys + Cys/Cys) were probably one of the high risk genetic factors for idiopathic asthenozoospermia among males in Sichuan, China, while the R207H polymorphism may be associated with idiopathic asthenozoospermia risk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sh., Zhang, Jh., Ding, Xp. et al. Association of polymorphisms in tektin-t gene with idiopathic asthenozoospermia in Sichuan, China. J Assist Reprod Genet 33, 181–187 (2016). https://doi.org/10.1007/s10815-015-0617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0617-9

Keywords

Navigation