Skip to main content

Advertisement

Log in

What maintains the high intra-follicular estradiol concentration in pre-ovulatory follicles?

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to establish the mechanism by which the estrogen concentration difference between the follicular fluid and the serum is maintained.

Methods

We used dialysis membrane with a pore size of <3 KD to characterize the estrogen-binding capacity of the follicular fluid. We performed PCR, western blot, and ELISA on luteinized granulosa cells to determine if sex hormone-binding globulin (SHBG) is produced by granulosa cells, and finally we used affinity columns and mass spectrometry to identify the estrogen-binding protein in the follicular fluid.

Results

We found that a significant estrogen concentration difference is maintained in a cell-free system and is lost with proteolysis of the follicular fluid proteins. Luteinized granulosa cells are likely not a source of SHBG, as we were not able to detect expression of SHBG in these cells. Perlecan was the most highly enriched follicular fluid protein in the affinity columns.

Conclusions

We were able to identify perlecan as the most likely candidate for the major estrogen-binding protein in the follicular fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Speroff L, Fritz MA. Clinical gynecologic endocrinology and infertility. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  2. Fritz MA, Speroff L. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  3. Clarke HG, Hope SA, Byers S, Rodgers RJ. Formation of ovarian follicular fluid may be due to the osmotic potential of large glycosaminoglycans and proteoglycans. Reproduction. 2006;132(1):119–31. doi:10.1530/rep.1.00960.

    Article  PubMed  CAS  Google Scholar 

  4. Ben-Rafael Z, Mastroianni Jr L, Meloni F, Lee MS, Flickinger GL. Total estradiol, free estradiol, sex hormone-binding globulin, and the fraction of estradiol bound to sex hormone-binding globulin in human follicular fluid. J Clin Endocrinol Metab. 1986;63(5):1106–11.

    Article  PubMed  CAS  Google Scholar 

  5. Younglai EV, Short RV. Pathways of steroid biosynthesis in the intact graafian collicle of mares in oestrus. J Endocrinol. 1970;47(3):321–31.

    Article  PubMed  CAS  Google Scholar 

  6. Agrawal R, Jacobs H, Payne N, Conway G. Concentration of vascular endothelial growth factor released by cultured human luteinized granulosa cells is higher in women with polycystic ovaries than in women with normal ovaries. Fertil Steril. 2002;78(6):1164–9.

    Article  PubMed  Google Scholar 

  7. Loukovaara M, Carson M, Palotie A, Adlercreutz H. Regulation of sex hormone-binding globulin production by isoflavonoids and patterns of isoflavonoid conjugation in HepG2 cell cultures. Steroids. 1995;60(9):656–61.

    Article  PubMed  CAS  Google Scholar 

  8. Arakawa S, Kuramitsu HK. Cloning and sequence analysis of a chymotrypsinlike protease from Treponema denticola. Infect Immun. 1994;62(8):3424–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Fahrer J, Kranaster R, Altmeyer M, Marx A, Bürkle A. Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length. Nucleic Acids Res. 2007;35(21), e143. doi:10.1093/nar/gkm944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fields S, Ternyak K, Gao H, Ostraat R, Akerlund J, Hagman J. The ‘zinc knuckle’ motif of early B cell factor is required for transcriptional activation of B cell-specific genes. Mol Immunol. 2008;45(14):3786–96. doi:10.1016/j.molimm.2008.05.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hallahan TW, Shapiro R, Vallee BL. Dual site model for the organogenic activity of angiogenin. Proc Natl Acad Sci U S A. 1991;88(6):2222–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. He MM, Voss J, Hubbell WL, Kaback HR. Arginine 302 (helix IX) in the lactose permease of Escherichia coli is in close proximity to glutamate 269 (helix VIII) as well as glutamate 325. Biochemistry. 1997;36(44):13682–7. doi:10.1021/bi971531b.

    Article  PubMed  CAS  Google Scholar 

  13. Hoke DE, Egan S, Cullen PA, Adler B. LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infect Immun. 2008;76(5):2063–9. doi:10.1128/iai.01643-07.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jordan RA, Preissler MT, Banas JA, Gosselin EJ. Production of genetically engineered biotinylated interleukin-2 and its application in a rapid nonradioactive assay for T-cell activation. Clin Diagn Lab Immunol. 2003;10(3):339–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Kawasaki H, Suyama E, Iyo M, Taira K. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res. 2003;31(3):981–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kernstock RM, Girotti AW. Lipid transfer protein binding of unmodified natural lipids as assessed by surface plasmon resonance methodology. Anal Biochem. 2007;365(1):111–21. doi:10.1016/j.ab.2007.02.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kosovský J, Durmanová V, Kúdelová M, Rezuchová I, Tkáciková L, Rajcáni J. A simple procedure for expression and purification of selected non-structural (alpha and beta) herpes simplex virus 1 (HSV-1) proteins. J Virol Methods. 2001;92(2):121–9.

    Article  PubMed  Google Scholar 

  18. La Gruta NL, Liu H, Dilioglou S, Rhodes M, Wiest DL, Vignali DA. Architectural changes in the TCR:CD3 complex induced by MHC:peptide ligation. J Immunol. 2004;172(6):3662–9.

    Article  PubMed  Google Scholar 

  19. Lapik YR, Misra JM, Lau LF, Pestov DG. Restricting conformational flexibility of the switch II region creates a dominant-inhibitory phenotype in Obg GTPase Nog1. Mol Cell Biol. 2007;27(21):7735–44. doi:10.1128/mcb.01161-07.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lovrich SD, La Fleur RL, Jobe DA, Johnson JC, Asp KE, Schell RF, et al. Borreliacidal OspC antibody response of canines with Lyme disease differs significantly from that of humans with Lyme disease. Clin Vaccine Immunol. 2007;14(5):635–7. doi:10.1128/cvi.00431-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Müller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron. 1996;17(2):255–65.

    Article  PubMed  Google Scholar 

  22. Nossal NG, Makhov AM, Chastain PD, Jones CE, Griffith JD. Architecture of the bacteriophage T4 replication complex revealed with nanoscale biopointers. J Biol Chem. 2007;282(2):1098–108. doi:10.1074/jbc.M606772200.

    Article  PubMed  CAS  Google Scholar 

  23. Pichaud F, Roux S, Frendo JL, Delage-Mourroux R, Maclouf J, de Vernejoul MC, et al. 1,25-Dihydroxyvitamin D3 induces NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase in human neonatal monocytes. Blood. 1997;89(6):2105–12.

    PubMed  CAS  Google Scholar 

  24. Richter S, Lamppa GK. A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc Natl Acad Sci U S A. 1998;95(13):7463–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Thomas NS, Pizzey AR, Tiwari S, Williams CD, Yang J. p130, p107, and pRb are differentially regulated in proliferating cells and during cell cycle arrest by alpha-interferon. J Biol Chem. 1998;273(37):23659–67.

    Article  PubMed  CAS  Google Scholar 

  26. Velazquez A, Reyes A, Chargoy J, Rosado A. Amino acid and protein concentrations of human follicular fluid. Fertil Steril. 1977;28(1):96–100.

    PubMed  CAS  Google Scholar 

  27. Forges T, Gerard A, Hess K, Monnier-Barbarino P, Gerard H. Expression of sex hormone-binding globulin (SHBG) in human granulosa-lutein cells. Mol Cell Endocrinol. 2004;219(1-2):61–8.

    Article  PubMed  CAS  Google Scholar 

  28. Yang CH, Almomen A, Wee YS, Jarboe EA, Peterson CM, Janat-Amsbury MM. An estrogen-induced endometrial hyperplasia mouse model recapitulating human disease progression and genetic aberrations. Cancer Med. 2015;4(7):1039–50. doi:10.1002/cam4.445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hammond GL. Access of reproductive steroids to target tissues. Obstet Gynecol Clin N Am. 2002;29(3):411–23.

    Article  Google Scholar 

  30. Munell F, Suarez-Quian CA, Selva DM, Tirado OM, Reventos J. Androgen-binding protein and reproduction: where do we stand? J Androl. 2002;23(5):598–609.

    PubMed  CAS  Google Scholar 

  31. Berube D, Seralini GE, Gagne R, Hammond GL. Localization of the human sex hormone-binding globulin gene (SHBG) to the short arm of chromosome 17 (17p12–p13). Cytogenet Cell Genet. 1990;54(1-2):65–7.

    Article  PubMed  CAS  Google Scholar 

  32. Eriksson AL, Lorentzon M, Mellstrom D, Vandenput L, Swanson C, Andersson N, et al. SHBG gene promoter polymorphisms in men are associated with serum sex hormone-binding globulin, androgen and androgen metabolite levels, and hip bone mineral density. J Clin Endocrinol Metab. 2006;91(12):5029–37.

    Article  PubMed  CAS  Google Scholar 

  33. Fortunati N, Raineri M, Cignetti A, Hammond GL, Frairia R. Control of the membrane sex hormone-binding globulin-receptor (SHBG-R) in MCF-7 cells: effect of locally produced SHBG. Steroids. 1998;63(5-6):282–4.

    Article  PubMed  CAS  Google Scholar 

  34. Hammond GL, Langley MS. Identification and measurement of sex hormone binding globulin (SHBG) and corticosteroid binding globulin (CBG) in human saliva. Acta Endocrinol (Copenh). 1986;112(4):603–8.

    CAS  Google Scholar 

  35. Hammond GL, Langley MS, Robinson PA. A liquid-phase immunoradiometric assay (IRMA) for human sex hormone binding globulin (SHBG). J Steroid Biochem. 1985;23(4):451–60.

    Article  PubMed  CAS  Google Scholar 

  36. Lahteenmaki PL, Hammond GL, Luukkainen T. Serum non-protein bound percentage and distribution of the progestin ST-1435: no effect of ST-1435 treatment on plasma SHBG and CBG binding capacities. Acta Endocrinol (Copenh). 1983;102(2):307–13.

    CAS  Google Scholar 

  37. Murayama Y, Hammond GL, Sugihara K. The SHBG gene and hormone dependence of breast cancer: a novel mechanism of hormone dependence of MCF-7 human breast cancer cells based upon SHBG. Breast Cancer (Tokyo, Japan). 1999;6(4):338–43.

    Article  Google Scholar 

  38. Niemi S, Maentausta O, Bolton NJ, Hammond GL. Time-resolved immunofluorometric assay of human SHBG. Steroids. 1988;52(4):413–4.

    Article  PubMed  CAS  Google Scholar 

  39. Speroff L, Fritz M. The preantral follicle. In: Fritz MA, editor. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011. p. 204–5.

    Google Scholar 

  40. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J Clin Endocrinol Metab. 1981;53(1):58–68.

    Article  PubMed  CAS  Google Scholar 

  41. Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol. 2013. doi:10.1016/j.matbio.2013.08.004.

    PubMed  PubMed Central  Google Scholar 

  42. Farach-Carson MC, Carson DD. Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology. 2007;17(9):897–905. doi:10.1093/glycob/cwm043.

    Article  PubMed  CAS  Google Scholar 

  43. Farach-Carson MC, Hecht JT, Carson DD. Heparan sulfate proteoglycans: key players in cartilage biology. Crit Rev Eukaryot Gene Expr. 2005;15(1):29–48.

    Article  PubMed  CAS  Google Scholar 

  44. Schofield KP, Gallagher JT, David G. Expression of proteoglycan core proteins in human bone marrow stroma. Biochem J. 1999;343(Pt 3):663–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. French MM, Smith SE, Akanbi K, Sanford T, Hecht J, Farach-Carson MC, et al. Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J Cell Biol. 1999;145(5):1103–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Eriksen GV, Carlstedt I, Morgelin M, Uldbjerg N, Malmstrom A. Isolation and characterization of proteoglycans from human follicular fluid. Biochem J. 1999;340(Pt 3):613–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yanagishita M. Proteoglycans and hyaluronan in female reproductive organs. EXS. 1994;70:179–90.

    PubMed  CAS  Google Scholar 

  48. Princivalle M, Hasan S, Hosseini G, de Agostini AI. Anticoagulant heparan sulfate proteoglycans expression in the rat ovary peaks in preovulatory granulosa cells. Glycobiology. 2001;11(3):183–94.

    Article  PubMed  CAS  Google Scholar 

  49. Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9. doi:10.1095/biolreprod.109.082941.

    Article  PubMed  CAS  Google Scholar 

  50. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol. 1999;237:97–132.

    PubMed  CAS  Google Scholar 

  51. de Agostini A. An unexpected role for anticoagulant heparan sulfate proteoglycans in reproduction. Swiss Med Wkly. 2006;136(37-38):583–90.

    PubMed  Google Scholar 

  52. Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, et al. BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem. 2005;280(8):7080–7. doi:10.1074/jbc.M409841200.

    Article  PubMed  CAS  Google Scholar 

  53. Mongiat M, Fu J, Oldershaw R, Greenhalgh R, Gown AM, Iozzo RV. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J Biol Chem. 2003;278(19):17491–9. doi:10.1074/jbc.M210529200.

    Article  PubMed  CAS  Google Scholar 

  54. Hosseini G, Liu J, de Agostini AI. Characterization and hormonal modulation of anticoagulant heparan sulfate proteoglycans synthesized by rat ovarian granulosa cells. J Biol Chem. 1996;271(36):22090–9.

    Article  PubMed  CAS  Google Scholar 

  55. McArthur ME, Irving-Rodgers HF, Byers S, Rodgers RJ. Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles. Biol Reprod. 2000;63(3):913–24.

    Article  PubMed  CAS  Google Scholar 

  56. Irving-Rodgers HF, Harland ML, Rodgers RJ. A novel basal lamina matrix of the stratified epithelium of the ovarian follicle. Matrix Biol. 2004;23(4):207–17. doi:10.1016/j.matbio.2004.05.008.

    Article  PubMed  CAS  Google Scholar 

  57. Britt KL, Drummond AE, Cox VA, Dyson M, Wreford NG, Jones ME, et al. An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology. 2000;141(7):2614–23. doi:10.1210/endo.141.7.7578.

    PubMed  CAS  Google Scholar 

  58. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993;90(23):11162–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaakov Bentov.

Ethics declarations

Ethics approval and consent to participate

The project was approved by the institutional Research Ethics Board of Mount Sinai Hospital in Toronto, and participants provided informed consent.

Additional information

Capsule We were able to identify perlecan as the most likely candidate for the major estrogen-binding protein in the follicular fluid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentov, Y., Jurisicova, A., Kenigsberg, S. et al. What maintains the high intra-follicular estradiol concentration in pre-ovulatory follicles?. J Assist Reprod Genet 33, 85–94 (2016). https://doi.org/10.1007/s10815-015-0612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0612-1

Keywords

Navigation