Skip to main content
Log in

A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity, as well as increasing mean telomere length in human spermatozoa with advancing age

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The effect of age on telomere length heterogeneity in men has not been studied previously. Our aims were to determine the relationship between variation in sperm telomere length (STL), men’s age, and semen parameters in spermatozoa from men undergoing in vitro fertilization (IVF) treatment.

Methods

To perform this prospective cross-sectional pilot study, telomere length was estimated in 200 individual spermatozoa from men undergoing IVF treatment at the NYU Fertility Center. A novel single-cell telomere content assay (SCT-pqPCR) measured telomere length in individual spermatozoa.

Results

Telomere length among individual spermatozoa within an ejaculate varies markedly and increases with age. Older men not only have longer STL but also have more variable STL compared to younger men. STL from samples with normal semen parameters was significantly longer than that from samples with abnormal parameters, but STL did not differ between spermatozoa with normal versus abnormal morphology.

Conclusion

The marked increase in STL heterogeneity as men age is consistent with a role for ALT during spermatogenesis. No data have yet reported the effect of age on STL heterogeneity. Based on these results, future studies should expand this modest sample size to search for molecular evidence of ALT in human testes during spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blackburn EH. Telomere states and cell fates. Nature. 2000;408:53–6.

    Article  CAS  PubMed  Google Scholar 

  2. Liu L et al. An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol. 2002;249:74–84.

    Article  CAS  PubMed  Google Scholar 

  3. Keefe DL et al. Telomere length predicts embryo fragmentation after in vitro fertilization in women—toward a telomere theory of reproductive aging in women. Am J Obst Gynecol. 2005;192:1256–60.

    Article  CAS  Google Scholar 

  4. Sahin E et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470:359–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Schaetzlein S et al. Telomere length is reset during early mammalian embryogenesis. Proc Natl Acad Sci U S A. 2004;101:8034–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kalmbach KH et al. Telomeres and human reproduction. Fertil Steril. 2013;99:23–9.

    Article  CAS  PubMed  Google Scholar 

  7. Krawetz SA. Paternal contribution: new insights and future challenges. Nat Rev Genet. 2005;6:633–42.

    Article  CAS  PubMed  Google Scholar 

  8. Moskovtsev SI et al. Disruption of telomere-telomere interactions associated with DNA damage in human spermatozoa. Syst Biol Reprod Med. 2010;56:407–12.

    Article  CAS  PubMed  Google Scholar 

  9. Kimura M et al. Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008;4, e37.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ioannou D, Griffin DK. Male fertility, chromosome abnormalities, and nuclear organization. Cytogenet Genome Res. 2011;133:269–79.

    Article  CAS  PubMed  Google Scholar 

  11. Lee HW et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392:569–74.

    Article  CAS  PubMed  Google Scholar 

  12. Reig-Viader R et al. Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis. Biol Reprod. 2014;90(5):103.

    Article  PubMed  Google Scholar 

  13. Reig-Viader R et al. Telomere homeostasis is compromised in spermatocytes from patients with idiopathic infertility. Fertil Steril. 2014;102(3):728–38.

    Article  CAS  PubMed  Google Scholar 

  14. Allsopp RC et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89:10114–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Aston KI et al. Divergence of sperm and leukocyte age-dependent telomere dynamics: implications for male-driven evolution of telomere length in humans. Mol Hum Reprod. 2012;18:517–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Baird DM et al. Telomere instability in the male germline. Hum Mol Genet. 2006;15:45–51.

    Article  CAS  PubMed  Google Scholar 

  17. Sartorius GA, Nieschlag E. Paternal age and reproduction. Hum Reprod Update. 2010;16:65–79.

    Article  PubMed  Google Scholar 

  18. Bryan TM et al. The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit. Hum Mol Genet. 1997;6:921–6.

    Article  CAS  PubMed  Google Scholar 

  19. Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11:319–30.

    Article  CAS  PubMed  Google Scholar 

  20. Dolcetti R, De Rossi A. Telomere/telomerase interplay in virus-driven and virus-independent lymphomagenesis: pathogenic and clinical implications. Med Res Rev. 2012;32:233–53.

    Article  CAS  PubMed  Google Scholar 

  21. Bryan TM et al. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14:4240–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Liu L et al. Telomere lengthening early in development. Nat Cell Biol. 2007;9:1436–41.

    Article  CAS  PubMed  Google Scholar 

  23. Li B, Lustig AJ. A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev. 1996;10:1310–26.

    Article  CAS  PubMed  Google Scholar 

  24. Bucholc M, Park Y, Lustig AJ. Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in Saccharomyces cerevisiae. Mol Cell Biol. 2001;21:6559–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. von Zglinicki T, Saretzki G, Docke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995;220:186–93.

    Article  Google Scholar 

  26. Aitken RJ et al. Oxidative stress and male reproductive health. Asian J Androl. 2014;16:31–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Thilagavathi J et al. Analysis of sperm telomere length in men with idiopathic infertility. Arch Gynecol Obstet. 2013;287:803–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ferlin A et al. In young men sperm telomere length is related to sperm number and parental age. Hum Reprod. 2013;28:3370–6.

    Article  CAS  PubMed  Google Scholar 

  29. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 2010; 5th edition

  30. Wang F et al. Robust measurement of telomere length in single cells. Proc Natl Acad Sci U S A. 2013;110:E1906–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nordstokke DW, Zumbo BD. A new nonparametric Levene test for equal variances. Psicológica. 2010;31:401–30.

    Google Scholar 

  32. Turner S, Hartshorne GM. Telomere lengths in human pronuclei, oocytes and spermatozoa. Mol Hum Reprod. 2013;19:510–8.

    Article  CAS  PubMed  Google Scholar 

  33. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12:1133–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Cheongeun Oh (NYU) and Professor Licinio da Silva (UFF) for assistance during the statistical analysis.

Funding was provided by CAPES Foundation, Ministry of Education of Brazil; the NYU Department of Obstetrics and Gynecology; and the Clinical and Translational Sciences Institute at NYU [NIH: #1UL1RR029893].

Ethical approval

This prospective cross-sectional pilot study was approved by the New York University Langone Medical Center Institutional Review Board (IRB).

Informed consent

Each participant provided written informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Keefe.

Additional information

Capsule The marked increase in STL heterogeneity as men age is consistent with a role for ALT during spermatogenesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, D.M.F., Kalmbach, K.H., Wang, F. et al. A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity, as well as increasing mean telomere length in human spermatozoa with advancing age. J Assist Reprod Genet 32, 1685–1690 (2015). https://doi.org/10.1007/s10815-015-0574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0574-3

Keywords

Navigation