Skip to main content

Advertisement

Log in

Scaffold-based delivery of adipose tissue-derived stem cells in rat frozen-thawed ovarian autografts: preliminary studies in a rat model

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate whether a gelatin-based Gelfoam sponge is feasible as a scaffold for adipose tissue-derived stem cell (ASC) therapy in rat frozen-thawed ovarian autografts.

Methods

Two sets of studies were performed. The in vitro set evaluated ASCs’ viability in the Gelfoam scaffold at different times of co-culturing (after 24, 48, 72, 96, and 120 h). The in vivo set used 20 12-week-old adult female Wistar rats. Frozen-thawed ovarian grafts were treated with ASCs delivered in Gelfoam scaffolds immediately after an autologous retroperitoneal transplant (ASCs-GS, n = 10). The controls received Gelfoam with a culture medium (GS, n = 10). Assessment of graft quality was conducted by vaginal smears (until euthanasia on the 30th postoperative day), histological analyses, follicular density, and viability and fibrosis. Immunohistochemical staining for VEGF-A expression, vascular network (vWF), apoptosis (caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)), cell proliferation (Ki-67), and hormone receptors (estrogen and progesterone) were performed.

Results

The cells remained viable in Gelfoam for up to 120 h of co-culturing. The graft morphology was similar among the groups. ASC therapy promoted the earlier resumption of the estrous phase (GS 16.6 ± 3 vs. ASCs-GS 12.8 ± 1.3 days) and enhanced estrogen receptors compared with the controls (p < 0.05) without interfering with the quantity and viability of the ovarian follicles, fibrosis, endothelial cells, VEGF immunoexpression, apoptosis, or cell proliferation (p > 0.05).

Conclusion

The Gelfoam scaffold could be a feasible and safe non-invasive technique for ASC delivery in the treatment of frozen-thawed ovarian autografts. Future studies should evaluate the real benefit of this treatment on the survival and endocrine activity of the graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. The Practice Committee of the American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril. 2014;101(5):1237–43.

    Article  Google Scholar 

  2. Lunardi FO, Araújo VR, Bernuci MP, Lunardi LO, Gonçalves RF, Carvalho Ade A, et al. Restoring fertility after ovarian tissue cryopreservation: a half century of research. Zygote. 2013;21(4):394–405.

    Article  PubMed  Google Scholar 

  3. Grynberg M, Poulain M, Sebag-Peyrelevade S, le Parco S, Fanchin R, Frydman N. Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil Steril. 2012;97(6):1260–8.

    Article  PubMed  Google Scholar 

  4. Szöke K, Brinchmann JE. Concise review: therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Transl Med. 2012;1:658–67.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  Google Scholar 

  6. Cherubino M, Rubin JP, Miljkovic N, Kelmendi-Doko A, Marra KG. Adipose-derived stem cells for wound healing applications. Ann Plast Surg. 2011;66(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  7. Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008;10:353–63.

    Article  CAS  PubMed  Google Scholar 

  8. Sun M, Wang S, Yu L, Gu F, Wang C, Yao Y. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013;4:80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Takehara Y, Yabuuchi A, Ezoe K, Kuroda T, Yamadera R, Sano C, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Invest. 2013;93:181–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Damous LL, Nakamuta JS, Teofilo de Carvalho AE, Soares-Jr JM, Simões MJ, Krieger JE, Baracat EC. Adipose tissue-derived stem cells in cryopreserved ovarian grafts. Stem Cell Res Ther. 2015;6(1):57. Epub ahead of print.

  11. Shikanov A, Zhang Z, Xu M, Smith RM, Rajan A, Woodruff TK, et al. Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng Part A. 2011;17(23–24):3095–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Friedman O, Orvieto R, Fisch B, Felz C, Freud E, Ben-Haroush A, et al. Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod. 2012;27:474–82.

    Article  CAS  PubMed  Google Scholar 

  13. Gao JM, Yan J, Li R, Li M, Yan LY, Wang TR, et al. Improvement in the quality of heterotopic allotransplanted mouse ovarian tissues with basic fibroblast growth factor and fibrin hydrogel. Hum Reprod. 2013;28(10):2784–93.

    Article  CAS  PubMed  Google Scholar 

  14. Vanacker J, Luyckx V, Dolmans MM, Des Rieux A, Jaeger J, Van Langendonckt A, et al. Transplantation of an alginate-Matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials. 2012;33(26):6079–85.

    Article  CAS  PubMed  Google Scholar 

  15. Cha SK, Shin DH, Kim BY, Yoon SY, Yoon TK, Lee WS, et al. Effect of human endothelial progenitor cell (EPC)- or mouse vascular endothelial growth factor-derived vessel formation on the survival of vitrified/warmed mouse ovarian grafts. Reprod Sci. 2014;21(7):859–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Henry L, Labied S, Fransolet M, Kirschvink N, Blacher S, Noel A, et al. Isoform 165 of vascular endothelial growth factor in collagen matrix improves ovine cryopreserved ovarian tissue revascularisation after xenotransplantation in mice. Reprod Biol Endocrinol. 2015;13(1):15.

    Article  Google Scholar 

  17. Amoh Y, Li L, Katsuoka K, Bouvet M, Hoffman R. GFP-expressing vascularization of Gelfoam® as a rapid in vivo assay of angiogenesis stimulators and inhibitors. BioTechniques. 2007;42:294–8.

    Article  CAS  PubMed  Google Scholar 

  18. Methe H, Nugent HM, Groothuis A, Seifert P, Sayegh MH, Edelman ER, et al. Matrix embedding alters the immune response against endothelial cells in vitro and in vivo. Circulation. 2005;112:I–I-95.

    Google Scholar 

  19. Lee JY, Choi MH, Shin EY, Kang YK. Autologous mesenchymal stem cells loaded in Gelfoam(®) for structural bone allograft healing in rabbits. Cell Tissue Bank. 2011;12(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  20. Mii S, Uehara F, Yano S, Tran B, Miwa S, Hiroshima Y, et al. Nestin-expressing stem cells promote nerve growth in long-term 3-dimensional Gelfoam®-supported histoculture. Plos One. 2013;8(6), e67153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nugent MH, Sjin RTT, White D, Milton LG, Manson RJ, Lawson JH, et al. Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. J Vasc Surg. 2007;46(3):548–56.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Danoviz ME, Nakamuta JS, Marques FLN, Santos L, Alvarenga EC, Santos AA. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention. PLoS One. 2010;5, e12077.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Nakamuta JS, Danoviz ME, Marques FL, dos Santos L, Becker C, Gonçalves GA, et al. Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold. PLoS One. 2009;4, e6005.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Danoviz ME, Bassaneze V, Nakamuta JS, dos Santos-Junior GR, Saint-Clair D, Bajgelman MC, et al. Adipose tissue-derived stem cells from humans and mice differ in proliferative capacity and genome stability in long-term cultures. Stem Cells Dev. 2011;20:661–70.

    Article  CAS  PubMed  Google Scholar 

  25. Marcondes FK, Bianchi FJ, Tanno AP. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol 2002;62:609–14. Gunasena KT, Villines PM, Critser ES, Critser JK: Live births after autologous transplant of cryopreserved mouse ovaries. Hum Reprod. 1997; 12:101–106.

  26. Gunasena KT, Villines PM, Critser ES, Critser JK. Live births after autologous transplant of cryopreserved mouse ovaries. Hum Reprod. 1997;12:101–6.

    Article  CAS  PubMed  Google Scholar 

  27. Fauque P, Ben Amor A, Joanne C, Agnani G, Bresson JL, Roux C. Use of trypan blue staining to assess the quality of ovarian cryopreservation. Fertil Steril. 2007;87:1200–7.

    Article  PubMed  Google Scholar 

  28. Nisolle M, Casanas-Roux F, Qu J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74:122–9.

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Lee HH, Lee HC, Ko DS, Kim SS. Assessment of vascular endothelial growth factor expression and apoptosis in the ovarian graft: can exogenous gonadotropin promote angiogenesis after ovarian transplantation? Fertil Steril. 2008;90(4 Suppl):1550–8.

    Article  CAS  PubMed  Google Scholar 

  30. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27:1114–22.

    Article  PubMed  Google Scholar 

  32. Curley GF, Hayes M, Ansari B, Shaw G, Ryan A, Barry F, et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012;67(6):496–501.

    Article  PubMed  Google Scholar 

  33. Ansboro S, Greiser U, Barry F, Murphy M. Strategies for improved targeting of therapeutic cells: implications for tissue repair. Eur Cell Mater. 2012;23:310–8.

    CAS  PubMed  Google Scholar 

  34. Sun Z, Tee BC, Kennedy KS, Kennedy PM, Kim DG, Mallery SR, et al. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model. PLoS One. 2013;8, e74672.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jenkins HP, Janda R, Clarke J. Clinical and experimental observations on the use of gelatin sponge or foam. Surgery. 1946;20(1):124–32.

    CAS  PubMed  Google Scholar 

  36. Rohanizadeh R, Swain MV, Mason RS. Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. J Mater Sci: Mater Med. 2008;19(3):1173–82.

    CAS  Google Scholar 

  37. Van Eyck AS, Jordan BF, Gallez B, Heilier JF, Van Langendonckt A, Donnez J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril. 2009;92:374–81.

    Article  PubMed  Google Scholar 

  38. Van Eyck AS, Bouzin C, Feron O, Romeu L, Van Langendonckt A, Donnez J, et al. Both host and graft vessels contribute to revascularization of xenografted human ovarian tissue in a murine model. Fertil Steril. 2010;93:1676–85.

    Article  PubMed  Google Scholar 

  39. Gaytán M, Sánchez MA, Morales C, Bellido C, Millán Y, Martín de Las Mulas J, et al. Cyclic changes of the ovarian surface epithelium in the rat. Reproduction. 2005;129(3):311–21.

    Article  PubMed  Google Scholar 

  40. Luyckx V, Dolmans MM, Vanacker J, Scalercio SR, Donnez J, Amorim CA. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res. 2013;6(1):83.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuño Moya C, Donnez J, et al. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101(4):1149–56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank São Paulo Research Foundation (FAPESP, Pio XI St, 1500, Alto da Lapa, São Paulo/SP-Brazil, 05468-901) for grant support (process numbers: 2010/17897-5 and 2012/09469-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for post-doctoral scholarship; Esmeralda Miristene Eher, Angela Batista Santos, Maria Cristina Rodrigues Medeiros, and Sandra de Moraes Fernezlian (Immunohistochemistry Laboratory/Pathology Department/FMUSP) for technical assistance with immunohistochemistry assay; Leonard Medeiros da Silva (pathologist) for the help in the analysis of morphological data; and American Expert Journal for the english editing service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Lamarão Damous.

Additional information

Capsule The Gelfoam scaffold could be a feasible and safe non-invasive technique for ASC delivery in the treatment of frozen-thawed ovarian autografts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damous, L.L., Nakamuta, J.S., Saturi de Carvalho, A.E.T. et al. Scaffold-based delivery of adipose tissue-derived stem cells in rat frozen-thawed ovarian autografts: preliminary studies in a rat model. J Assist Reprod Genet 32, 1285–1294 (2015). https://doi.org/10.1007/s10815-015-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0527-x

Keywords

Navigation