Journal of Assisted Reproduction and Genetics

, Volume 32, Issue 9, pp 1359–1364 | Cite as

Association of WNT4 polymorphisms with endometriosis in infertile patients

  • Fernanda Mafra
  • Michele Catto
  • Bianca Bianco
  • Caio Parente Barbosa
  • Denise Christofolini



Recently, several genome-wide association studies have demonstrated an association between endometriosis and markers located in or near to WNT4 gene. In order to assess the validity of the findings, we conducted a replication case–control study in a Brazilian population.


Genetic association study comprising 400 infertile women with endometriosis and 400 fertile women as controls. TaqMan allelic discrimination technique was used to investigate the relationship between endometriosis and four single-nucleotide polymorphisms (rs16826658, rs3820282, rs2235529, and rs7521902) in WNT4 gene. Genotype distribution, allele frequency, and haplotype analysis of the WNT4 polymorphisms were performed. A p value <0.05 was considered significant.


The results revealed a significant association of rs16826658 (p = 7e-04) and rs3820282 (p = 0.048) single-nucleotide polymorphisms (SNPs) on WNT4 gene with endometriosis-related infertility, while rs2235529 and rs7521902 SNPs showed no difference between cases and controls.


Our results suggested that rs16826658 and rs3820282 polymorphisms on WNT4 gene might be involved in the pathogenesis of endometriosis in the infertile women studied. Analysis of WNT4 genetic variants might help to identify patients at high risk for disease development.


Endometriosis WNT4 gene Polymorphism Infertility 



The work was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) No. 2013/14470-9. F.M. was supported by a PhD scholarship from FAPESP No. 2012/22394-8.

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.CrossRefPubMedGoogle Scholar
  2. 2.
    Chien AJ, Moon RT. WNTs and WNT receptors as therapeutic tools and targets in human disease processes. Front Biosci. 2007;12:448–57.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Li Q, Kannan A, Das A, Demayo FJ, Hornsby PJ, Young SL, et al. WNT4 acts downstream of BMP2 and functions via beta-catenin signaling pathway to regulate human endometrial stromal cell differentiation. Endocrinology. 2013;154(1):446–57.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397(6718):405–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Boyer A, Lapointe E, Zheng X, Cowan RG, Li H, Quirk SM, et al. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J. 2010;24:3010–25.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Jordan BK, Mohammed M, Ching ST, Délot E, Chen XN, Dewing P, et al. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet. 2001;68(5):1102–9.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Else T, Hammer GD. Genetic analysis of adrenal absence: agenesis and aplasia. Trends Endocrinol Metab. 2005;16:458–68.CrossRefPubMedGoogle Scholar
  8. 8.
    Uno S, Zembutsu H, Hirasawa A, Takahashi A, Kubo M, Akahane T, et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet. 2010;42:707–10.CrossRefPubMedGoogle Scholar
  9. 9.
    Albertsen HM, Chettier R, Farrington P, Ward K. Genome-wide association study link novel loci to endometriosis. PLoS ONE. 2013;8, e58257.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Nyholt DR, Low K, Anderson A, Painter JN, Uno S, Morris AP, et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat Genet. 2012;44:1355–9.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67:817–21.Google Scholar
  12. 12.
    Barbosa CP, Souza AM, Bianco B, Christofolini D, Bach FA, Lima GR. Frequency of endometriotic lesions in peritoneum samples from asymptomatic fertile women and correlation with CA125 values. Sao Paulo Med J. 2009;127(6):342–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Lahiri DK, Numberger JI. A rapid non-enzymatic method for preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19:5444.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):789–99.CrossRefGoogle Scholar
  15. 15.
    Bulletti C, Coccia ME, Battistoni S, Borini A. Endometriosis and infertility. J Assist Reprod Genet. 2010;27(8):441–7.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Dun EC, Taylor RN, Wieser F. Advances in the genetics of endometriosis. Genome Med. 2010;14(2):75.CrossRefGoogle Scholar
  17. 17.
    Aznaurova YB, Zhumataev MB, Roberts TK, Aliper AM, Zhavoronkov AA. Molecular aspects of development and regulation of endometriosis. Reprod Biol Endocrinol. 2014;13(12):50.CrossRefGoogle Scholar
  18. 18.
    Lee GH, Choi YM, Hong MA, Yoon SH, Kim JJ, Hwang K, et al. Association of CDKN2BAS and WNT4 genetic polymorphisms in Korean patients with endometriosis. Fertil Steril. 2014;102(5):1393–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Wu Z, Yuan M, Li Y, Fu F, Ma W, Li H, et al. Analysis of WNT4 polymorphism in Chinese Han women with endometriosis. Reprod Biomed Online. 2015;30(4):415–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Luong HT, Painter JN, Shakhbazov K, Chapman B, Henders AK, Powell JE, et al. Fine mapping of variants associated with endometriosis in the WNT4 region on chromosome 1p36. Mol Epidemiol Genet. 2013;4(4):193–206.Google Scholar
  21. 21.
    Painter JN, Anderson CA, Nyholt DR, Macgregor S, Lin J, Lee SH, et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet. 2011;43(1):51–4.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Pagliardini L, Gentilini D, Vigano P, Panina-Bordignon P, Busacca M, Candiani M, et al. An Italian association study and meta-analysis with previous GWAS confirm WNT4, CDKN2BAS and FN1 as the first identified susceptibility loci for endometriosis. J Med Genet. 2013;50(1):43–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Sundqvist J, Xu H, Vodolazkaia A, Fassbender A, Kyama C, Bokor A, et al. Replication of endometriosis-associated single-nucleotide polymorphisms from genome-wide association studies in a Caucasian population. Hum Reprod. 2013;28(3):835–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Giolo SR, Soler JM, Greenway SC, Almeida MA, de Andrade M, Seidman JG, et al. Brazilian urban population genetics structure reveals a high degree of admixture. Eur J Hum Genet. 2012;20(1):111–6.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Franco HL, Dai D, Lee KY, Rubel CA, Roop D, Boerboom D, et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEB J. 2011;25(4):1176–87.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: a case report. Hum Reprod. 2007;22(1):224–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and mullerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab. 2008;93(3):895–900.CrossRefPubMedGoogle Scholar
  28. 28.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483–7.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Bui TD, Zhang L, Rees MCP, Bicknell R, Harris AL. Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer. 1997;75:1131–6.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Gaetje R, Holtrich U, Engels K, Kissler S, Rody A, Karn T, et al. Endometriosis may be generated by mimicking the ontogenetic development of the female genital tract. Fertil Steril. 2007;87:651–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Pabona JM, Simmen FA, Nikiforov MA, Zhuang D, Shankar K, Velarde MC, et al. Kruppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2012;97(3):376–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fernanda Mafra
    • 1
  • Michele Catto
    • 1
  • Bianca Bianco
    • 1
  • Caio Parente Barbosa
    • 1
  • Denise Christofolini
    • 1
    • 2
  1. 1.Collective Health Department, Division of Reproductive Health and Population GeneticsFaculdade de Medicina do ABCSanto AndréBrazil
  2. 2.Av. Príncipe de Gales, 821, CEPESSanto AndréBrazil

Personalised recommendations