Skip to main content

Advertisement

Log in

Effect of Anti-Müllerian hormone (AMH) and bone morphogenetic protein 15 (BMP-15) on steroidogenesis in primary-cultured human luteinizing granulosa cells through Smad5 signalling

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To determine if there is any effect of AMH and BMP-15 on estradiol and progesterone production from primary-cultured human luteinizing granulosa cells, to delineate what is the effect of FSH on their actions and which are the possible mechanisms involved.

Methods

Luteinizing granulosa cells (GCs), obtained from follicular fluid of 30 women undergoing in vitro fertilization, were cultured, after a short 24-h preincubation period, in serum-free medium for 24 or/and 48 h in the presence/absence of various concentrations of AMH, BMP-15 and FSH alone or in combinations. Estradiol and progesterone production, SMAD5 phosphorylation and StAR expression were studied in parallel. Steroids were measured in culture-supernatant using enzyme-immunoassays, while Smad5-signaling pathway activation and StAR protein expression were assessed immunocytochemically.

Result(s)

We found that the treatment of AMH in GCs for 24/48 h attenuated FSH-induced estradiol production (p < 0.001), had no effect on basal estradiol levels, decreased basal progesterone production (p < 0.001) and FSH-induced StAR expression (p < 0.001). On the other hand, BMP-15 decreased basal estradiol levels (p < 0.001) and attenuated FSH-induced estradiol production (p < 0.001). Furthermore, BMP-15 reduced progesterone basal secretion (p < 0.001), an effect that was partially reversed by FSH (p < 0.01), probably via increasing StAR expression (p < 0.001). FSH-induced StAR expression was also attenuated by BMP-15 (p < 0.001). FSH, AMH and BMP-15 activated Smad-signaling pathway, as confirmed by the increase of phospo-Smad5 protein levels (p < 0.001 compared to control).

Conclusion(s)

AMH and BMP-15 by interacting with FSH affect the production of estradiol and progesterone from cultured luteinizing-granulosa cells possibly via Smad5-protein phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Knight PG, Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78(3–4):165–83. Review.

    Article  CAS  PubMed  Google Scholar 

  2. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206. Review.

    Article  CAS  PubMed  Google Scholar 

  3. Messinis IE, Messini CI, Dafopoulos K. The role of gonadotropins in the follicular phase. Ann N Y Acad Sci. 2010;1205:5–11. Review.

    Article  CAS  PubMed  Google Scholar 

  4. Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 2005;11(2):143–60.

    CAS  PubMed  Google Scholar 

  5. Lutz M, Knaus P. Integration of the TGF-beta pathway into the cellular signalling network. Cell Signal. 2002;14(12):977–88. Review.

    Article  CAS  PubMed  Google Scholar 

  6. La Marca A, Broekmans FJ, Volpe A, Fauser BC, Macklon NS. ESHRE special interest group for reproductive endocrinology–AMH round table. Anti-mullerian hormone (AMH): what do we still need to know? Hum Reprod. 2009;24(9):2264–75.

    Article  PubMed  Google Scholar 

  7. Visser JA, Themmen AP. Anti-Müllerian hormone and folliculogenesis. Mol Cell Endocrinol. 2005;234(1–2):81–6. Review.

    Article  CAS  PubMed  Google Scholar 

  8. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143(3):1076–84.

    CAS  PubMed  Google Scholar 

  9. Themmen AP. Anti-Müllerian hormone: its role in follicular growth initiation and survival and as an ovarian reserve marker. J Natl Cancer Inst Monogr. 2005;34:18–21. Review.

    Article  CAS  PubMed  Google Scholar 

  10. Salmon NA, Handyside AH, Joyce IM. Oocyte regulation of anti-Müllerian hormone expression in granulosa cells during ovarian follicle development in mice. Dev Biol. 2004;266(1):201–8.

    Article  CAS  PubMed  Google Scholar 

  11. Visser JA. AMH signaling: from receptor to target gene. Mol Cell Endocrinol. 2003;211(1–2):65–73. Review.

    Article  CAS  PubMed  Google Scholar 

  12. Mazerbourg S, Hsueh AJ. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Hum Reprod Update. 2006;12(4):373–83.

    Article  CAS  PubMed  Google Scholar 

  13. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142(11):4891–9.

    CAS  PubMed  Google Scholar 

  14. McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21(2):200–14. Review.

    CAS  PubMed  Google Scholar 

  15. Kallio S, Aittomäki K, Piltonen T, Veijola R, Liakka A, Vaskivuo TE, et al. Anti-Mullerian hormone as a predictor of follicular reserve in ovarian insufficiency: special emphasis on FSH-resistant ovaries. Hum Reprod. 2012;27(3):854–60.

    Article  CAS  PubMed  Google Scholar 

  16. de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC. Antimüllerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril. 2002;77(2):357–62.

    Article  PubMed  Google Scholar 

  17. Visser JA, de Jong FH, Laven JS, Themmen AP. Anti-Müllerian hormone: a new marker for ovarian function. Reproduction. 2006;131(1):1–9. Review.

    Article  CAS  PubMed  Google Scholar 

  18. Arabzadeh S, Hossein G, Rashidi BH, Hosseini MA, Zeraati H. Comparing serum basal and follicular fluid levels of anti-Müllerian hormone as a predictor of in vitro fertilization outcomes in patients with and without polycystic ovary syndrome. Ann Saudi Med. 2010;30(6):442–7.

    PubMed Central  PubMed  Google Scholar 

  19. Dumesic DA, Lesnick TG, Stassart JP, Ball GD, Wong A, Abbott DH. Intrafollicular antimüllerian hormone levels predict follicle responsiveness to follicle-stimulating hormone (FSH) in normoandrogenic ovulatory women undergoing gonadotropin releasing-hormone analog/recombinant human FSH therapy for in vitro fertilization and embryo transfer. Fertil Steril. 2009;92(1):217–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Silberstein T, MacLaughlin DT, Shai I, Trimarchi JR, Lambert-Messerlian G, Seifer DB, et al. Mullerian inhibiting substance levels at the time of HCG administration in IVF cycles predict both ovarian reserve and embryo morphology. Hum Reprod. 2006;21(1):159–63.

    Article  CAS  PubMed  Google Scholar 

  21. Cook CL, Siow Y, Brenner AG, Fallat ME. Relationship between serum müllerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil Steril. 2002;77(1):141–6.

    Article  PubMed  Google Scholar 

  22. Laven JS, Mulders AG, Visser JA, Themmen AP, De Jong FH, Fauser BC. Anti-Müllerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. J Clin Endocrinol Metab. 2004;89(1):318–23.

    Article  CAS  PubMed  Google Scholar 

  23. Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, et al. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab. 2007;92(1):240–5.

    Article  CAS  PubMed  Google Scholar 

  24. Pigny P, Merlen E, Robert Y, Cortet-Rudelli C, Decanter C, Jonard S, et al. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab. 2003;88(12):5957–62.

    Article  CAS  PubMed  Google Scholar 

  25. Wachs DS, Coffler MS, Malcom PJ, Chang RJ. Serum anti-mullerian hormone concentrations are not altered by acute administration of follicle stimulating hormone in polycystic ovary syndrome and normal women. J Clin Endocrinol Metab. 2007;92(5):1871–4.

    Article  CAS  PubMed  Google Scholar 

  26. Di Pasquale E, Beck-Peccoz P, Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet. 2004;75(1):106–11.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Elvin JA, Yan C, Matzuk MM. Oocyte-expressed TGF-beta superfamily members in female fertility. Mol Cell Endocrinol. 2000;159(1–2):1–5. Review.

    Article  CAS  PubMed  Google Scholar 

  28. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998;12(12):1809–17.

    Article  CAS  PubMed  Google Scholar 

  29. Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppä L, et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab. 1999;84(8):2744–50.

    CAS  PubMed  Google Scholar 

  30. Chang HM, Cheng JC, Klausen C, Leung PC. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells. Mol Endocrinol. 2013;27(12):2093–104.

    Article  CAS  PubMed  Google Scholar 

  31. Galloway SM, Gregan SM, Wilson T, McNatty KP, Juengel JL, Ritvos O, et al. Bmp15 mutations and ovarian function. Mol Cell Endocrinol. 2002;191(1):15–8. Review.

    Article  CAS  PubMed  Google Scholar 

  32. Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004;70(4):900–9.

    Article  CAS  PubMed  Google Scholar 

  33. Otsuka F, McTavish KJ, Shimasaki S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev. 2011;78(1):9–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Liu J, Wang B, Wei Z, Zhou P, Zu Y, Zhou S, et al. Mutational analysis of human bone morphogenetic protein 15 in Chinese women with polycystic ovary syndrome. Metabolism. 2011;60(11):1511–4.

    Article  CAS  PubMed  Google Scholar 

  35. Tiotiu D, Alvaro Mercadal B, Imbert R, Verbist J, Demeestere I, De Leener A, et al. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010;25(6):1581–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wu YT, Tang L, Cai J, Lu XE, Xu J, Zhu XM, et al. High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum Reprod. 2007;22(6):1526–31.

    Article  CAS  PubMed  Google Scholar 

  37. Li L, Mo YQ, Chen XL, Li Y, Chen YX, Zhong JM, et al. Effect of anti-Müllerian hormone on P450 aromatase mRNA expression in cultured human luteinized granulose cells. Zhonghua Fu Chan Ke Za Zhi. 2009;44(3):191–5.

    CAS  PubMed  Google Scholar 

  38. Grossman MP, Nakajima ST, Fallat ME, Siow Y. Müllerian-inhibiting substance inhibits cytochrome P450 aromatase activity in human granulosa lutein cell culture. Fertil Steril. 2008;89(5 Suppl):1364–70.

    Article  CAS  PubMed  Google Scholar 

  39. Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, et al. Anti-Müllerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96(5):1246–51.e1.

    Article  CAS  PubMed  Google Scholar 

  40. Lyet L, Louis F, Forest MG, Josso N, Behringer RR, Vigier B. Ontogeny of reproductive abnormalities induced by deregulation of anti-müllerian hormone expression in transgenic mice. Biol Reprod. 1995;52(2):444–54.

    Article  CAS  PubMed  Google Scholar 

  41. di Clemente N, Ghaffari S, Pepinsky RB, Pieau C, Josso N, Cate RL, et al. A quantitative and interspecific test for biological activity of anti-müllerian hormone: the fetal ovary aromatase assay. Development. 1992;114(3):721–7.

    PubMed  Google Scholar 

  42. Kevenaar ME, Themmen AP, Laven JS, Sonntag B, Fong SL, Uitterlinden AG, et al. Anti-Müllerian hormone and anti-Müllerian hormone type II receptor polymorphisms are associated with follicular phase estradiol levels in normo-ovulatory women. Hum Reprod. 2007;22(6):1547–54.

    Article  CAS  PubMed  Google Scholar 

  43. Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem. 2001;276(14):11387–92.

    Article  CAS  PubMed  Google Scholar 

  44. Elis S, Dupont J, Couty I, Persani L, Govoroun M, Blesbois E, et al. Expression and biological effects of bone morphogenetic protein-15 in the hen ovary. J Endocrinol. 2007;194(3):485–97.

    Article  CAS  PubMed  Google Scholar 

  45. Karamouti M, Kollia P, Kallitsaris A, Vamvakopoulos N, Kollios G, Messinis IE. Growth hormone, insulin-like growth factor I, and leptin interaction in human cultured lutein granulosa cells steroidogenesis. Fertil Steril. 2008;90(4 Suppl):1444–50.

    Article  CAS  PubMed  Google Scholar 

  46. Földesi I, Breckwoldt M, Neulen J. Oestradiol production by luteinized human granulosa cells: evidence of the stimulatory action of recombinant human follicle stimulating hormone. Hum Reprod. 1998;13(6):1455–60.

    Article  PubMed  Google Scholar 

  47. Lambert A, Harris SD, Knaggs P, Robertson WR. Improved FSH sensitisation and aromatase assay in human granulosa-lutein cells. Mol Hum Reprod. 2000;6(8):677–80.

    Article  CAS  PubMed  Google Scholar 

  48. Breckwoldt M, Selvaraj N, Aharoni D, Barash A, Segal I, Insler V, et al. Expression of Ad4-BP/cytochrome P450 side chain cleavage enzyme and induction of cell death in long-term cultures of human granulosa cells. Mol Hum Reprod. 1996;2(6):391–400.

    Article  CAS  PubMed  Google Scholar 

  49. Karamouti M, Kollia P, Kallitsaris A, Vamvakopoulos N, Kollios G, Messinis IE. Modulating effect of leptin on basal and follicle stimulating hormone stimulated steroidogenesis in cultured human lutein granulosa cells. J Endocrinol Investig. 2009;32(5):415–9.

    Article  CAS  Google Scholar 

  50. Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem. 2000;275(50):39523–8.

    Article  CAS  PubMed  Google Scholar 

  51. Chang HM, Klausen C, Leung PC. Antimüllerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil Steril. 2013;100(2):585–92.e1.

    Article  CAS  PubMed  Google Scholar 

  52. Minegishi T, Tsuchiya M, Hirakawa T, Abe K, Inoue K, Mizutani T, et al. Expression of steroidogenic acute regulatory protein (StAR) in rat granulosa cells. Life Sci. 2000;67(9):1015–24.

    Article  CAS  PubMed  Google Scholar 

  53. Tajima K, Hosokawa K, Yoshida Y, Dantes A, Sasson R, Kotsuji F, et al. Establishment of FSH-responsive cell lines by transfection of pre-ovulatory human granulosa cells with mutated p53 (p53val135) and Ha-ras genes. Mol Hum Reprod. 2002;8(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  54. Anttonen M, Färkkilä A, Tauriala H, Kauppinen M, Maclaughlin DT, Unkila-Kallio L, et al. Anti-Müllerian hormone inhibits growth of AMH type II receptor-positive human ovarian granulosa cell tumor cells by activating apoptosis. Lab Investig. 2011;91(11):1605–14.

    Article  CAS  PubMed  Google Scholar 

  55. Pulkki MM, Mottershead DG, Pasternack AH, Muggalla P, Ludlow H, van Dinther M, et al. A covalently dimerized recombinant human bone morphogenetic protein-15 variant identifies bone morphogenetic protein receptor type 1B as a key cell surface receptor on ovarian granulosa cells. Endocrinology. 2012;153(3):1509–18.

    Article  CAS  PubMed  Google Scholar 

  56. Miyoshi T, Otsuka F, Suzuki J, Takeda M, Inagaki K, Kano Y, et al. Mutual regulation of follicle-stimulating hormone signaling and bone morphogenetic protein system in human granulosa cells. Biol Reprod. 2006;74(6):1073–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr Panagiotis Liakos, Assistant Professor in Department of Biochemistry in University of Thessaly and Anastasia Tzavella for their laboratory assistance.

Ethical statement

• The manuscript has not been submitted to more than one journal for simultaneous consideration.

• The manuscript has not been published previously (partly or in full), unless the new work concerns an expansion of previous work (please provide transparency on the re-use of material to avoid the hint of text-recycling (“self-plagiarism”)).

• A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g., “salami-publishing”).

• No data have been fabricated or manipulated (including images) to support your conclusions.

• No data, text, or theories by others are presented as if they were the author’s own (“plagiarism”). Proper acknowledgements to other works must be given (this includes material that is closely copied (near verbatim), summarized and/or paraphrased), quotation marks are used for verbatim copying of material, and permissions are secured for material that is copyrighted.

Important note: the journal may use software to screen for plagiarism.

• Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities - tacitly or explicitly - at the institute/organization where the work has been carried out, before the work is submitted.

• Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis E Messinis.

Additional information

Capsule AMH and BMP-15 interact with FSH and affect the production of estradiol and progesterone from cultured luteinized granulosa cells possibly via Smad5-protein phosphorylation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prapa, E., Vasilaki, A., Dafopoulos, K. et al. Effect of Anti-Müllerian hormone (AMH) and bone morphogenetic protein 15 (BMP-15) on steroidogenesis in primary-cultured human luteinizing granulosa cells through Smad5 signalling. J Assist Reprod Genet 32, 1079–1088 (2015). https://doi.org/10.1007/s10815-015-0494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0494-2

Keywords

Navigation