Skip to main content

Advertisement

Log in

Follicle-stimulating hormone enhances recovery from low-dose doxorubicin-induced spermatogenic disorders in mice

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate the effects of FSH for promoting spermatogenesis in mice with low-dose doxorubicin-induced spermatogenesis impairment.

Methods

Eight-wk-old male imprinting control region mice were divided into three groups. Groups D and F received 0.5 mg/kg of doxorubicin twice weekly for 5 weeks. Group C received saline instead of doxorubicin. After inducing spermatogenesis impairment, group D was treated daily with saline for 4 weeks. Group F was given 1 IU of recombinant human FSH daily for 4 weeks. Spermatogenesis recovery was evaluated based on the testis weight, sperm count, histological assessment, and mating. The percentage of sperm with unfragmented deoxyribonucleic acid (DNA) was analyzed by single-cell pulsed-field gel electrophoresis, and the serum FSH levels were measured.

Results

The elevation of serum FSH advanced slowly. The testis weight, sperm count, percentage of seminiferous tubules with spermatogenesis, percentage of sperm with unfragmented DNA and pregnancy rate were significantly increased by the administration of FSH.

Conclusion

Our study findings indicated that the immediate administration of exogenous FSH can promote the recovery from impaired spermatogenesis induced by low-dose doxorubicin before endogenous FSH increases to the maximum level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lampe H, Horwich A, Norman A, Nicholls J, Dearnaley DP. Fertility after chemotherapy for testicular germ cell cancer. J Clin Oncol. 1997;15:239–45.

    CAS  PubMed  Google Scholar 

  2. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;34:12–7.

    Article  CAS  PubMed  Google Scholar 

  3. Hsiao W, Stahl PJ, Osterberg EC, Nejat E, Palermo GD, Rosenwaks Z, et al. Successful treatment of postchemotherapy azoospermia with microsurgical testicular sperm extraction: the Weill Cornell experience. J Clin Oncol. 2011;29:1607–11.

    Article  PubMed  Google Scholar 

  4. Chung K, Irani J, Efymow B, Blasco L, Patrizio P. Sperm cryopreservation for male patients with cancer: an epidemiological analysis at the University of Pennsylvania. Eur J Obstet Gynecol Reprod Biol. 2004;113 Suppl 1:S7–11.

    Article  PubMed  Google Scholar 

  5. Meistrich ML, Kangasniemi M. Hormone treatment after irradiation stimulates recovery of rat spermatogenesis from surviving spermatogonia. J Androl. 1997;18:80–7.

    CAS  PubMed  Google Scholar 

  6. Udagawa K, Ogawa T, Watanabe T, Tamura Y, Kita K, Kubota Y. Testosterone administration promotes regeneration of chemically impaired spermatogenesis in rats. Int J Urol. 2006;13:1103–8.

    Article  CAS  PubMed  Google Scholar 

  7. Aminsharifi A, Shakeri S, Ariafar A, Moeinjahromi B, Kumar PV, Karbalaeedoost S. Preventive role of exogenous testosterone on cisplatin-induced gonadal toxicity: an experimental placebo-controlled prospective trial. Fertil Steril. 2010;93:1388–93.

    Article  CAS  PubMed  Google Scholar 

  8. Ruwanpura SM, McLachlan RI, Stanton PG, Meachem SJ. Follicle-stimulating hormone affects spermatogonial survival by regulating the intrinsic apoptotic pathway in adult rats. Biol Reprod. 2008;78:705–13.

    Article  CAS  PubMed  Google Scholar 

  9. Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol. 2010;205:117–31.

    Article  CAS  PubMed  Google Scholar 

  10. Gnanaprakasam MS, Chen CJ, Sutherland JG, Bhalla VK. Receptor depletion and replenishment processes: in vivo regulation of gonadotropin receptors by luteinizing hormone, follicle stimulating hormone and ethanol in rat testis. Biol Reprod. 1979;20:991–1000.

    Article  CAS  PubMed  Google Scholar 

  11. Trivedi PP, Tripathi DN, Jena GB. Hesperetin protects testicular toxicity of doxorubicin in rat: role of NFkappaB, p38 and caspase-3. Food Chem Toxicol. 2011;49:838–47.

    Article  CAS  PubMed  Google Scholar 

  12. Sudo K. An experimental model of Adriamycin-induced spermatogenic disorder in mice (1): histological and functional analysis. J Med Soc Toho. 1991;38:462–75.

    CAS  Google Scholar 

  13. Singh J, Handelsman DJ. The effects of recombinant FSH on testosterone-induced spermatogenesis in gonadotrophin-deficient (hpg) mice. J Androl. 1996;17:382–93.

    CAS  PubMed  Google Scholar 

  14. Eddy EM. Male germ cell gene expression. Recent Prog Horm Res. 2002;57:103–28.

    Article  CAS  PubMed  Google Scholar 

  15. Sato K, Sueoka K, Tanigaki R, Tajima H, Nakabayashi A, Yoshimura Y, et al. Green tea extracts attenuate doxorubicin-induced spermatogenic disorders in conjunction with higher telomerase activity in mice. J Assist Reprod Genet. 2010;27:501–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kanatsu-Shinohara M, Toyokuni S, Morimoto T, Matsui S, Honjo T, Shinohara T. Functional assessment of self-renewal activity of male germline stem cells following cytotoxic damage and serial transplantation. Biol Reprod. 2003;68:1801–7.

    Article  CAS  PubMed  Google Scholar 

  17. Zohni K, Zhang X, Tan SL, Chan P, Nagano MC. The efficiency of male fertility restoration is dependent on the recovery kinetics of spermatogonial stem cells after cytotoxic treatment with busulfan in mice. Hum Reprod. 2012;27:44–53.

    Article  CAS  PubMed  Google Scholar 

  18. Kaneko S, Yoshida J, Ishikawa H, Takamatsu K. Single-cell pulsed-field gel electrophoresis to detect the early stage of DNA fragmentation in human sperm nuclei. PLoS One. 2012;7, e42257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Meistrich ML, Shetty G. Inhibition of spermatogonial differentiation by testosterone. J Androl. 2003;24:135–48.

    CAS  PubMed  Google Scholar 

  20. Foresta C, Bettella A, Spolaore D, Merico M, Rossato M, Ferlin A. Suppression of the high endogenous levels of plasma FSH in infertile men are associated with improved Sertoli cell function as reflected by elevated levels of plasma inhibin B. Hum Reprod. 2004;19:1431–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lu CC, Meistrich ML. Cytotoxic effects of chemotherapeutic drugs on mouse testis cells. Cancer Res. 1979;39:3575–82.

    CAS  PubMed  Google Scholar 

  22. Imahie H, Adachi T, Nakagawa Y, Nagasaki T, Yamamura T, Hori M. Effects of Adriamycin, an anticancer drug showing testicular toxicity, on fertility in male rats. J Toxicol Sci. 1985;20:183–93.

    Article  Google Scholar 

  23. Meistrich ML, Goldstein LS, Wyrobek AJ. Long-term infertility and dominant lethal mutations in male mice treated with adriamycin. Mutat Res. 1985;152:53–65.

    Article  CAS  PubMed  Google Scholar 

  24. Lui RC, Laregina MC, Herbold DR, Johnson RF. Testicular cytotoxicity of intravenous doxorubicin in rats. J Urol. 1986;136:940–3.

    CAS  PubMed  Google Scholar 

  25. Meistrich ML, Wilson G, Huhtaniemi I. Hormonal treatment after cytotoxic therapy stimulates recovery of spermatogenesis. Cancer Res. 1999;59:3557–60.

    CAS  PubMed  Google Scholar 

  26. Xin YF, You ZQ, Gao HY, Zhou GL, Chen YX, Yu J, et al. Protective effect of Lycium barbarum polysaccharides against doxorubicin-induced testicular toxicity in rats. Phytother Res. 2012;26:716–21.

    Article  CAS  PubMed  Google Scholar 

  27. Meachem SJ, Wreford NG, Stanton PG, Robertson DM, McLachlan RI. Follicle-stimulating hormone is required for the initial phase of spermatogenic restoration in adult rats following gonadotropin suppression. J Androl. 1988;19:725–35.

    Google Scholar 

  28. Sinha-Hikim AP, Swerdloff RS. Temporal and stage-specific effects of recombinant human follicle-stimulating hormone on the maintenance of spermatogenesis in gonadotrophin-releasing hormone antagonist-treated rat. Endocrinology. 1995;136:253–61.

    Google Scholar 

  29. McLachlan RI, Wreford NG, de Kretser DM, Robertson DM. The effects of recombinant follicle-stimulating hormone on the restoration of spermatogenesis in the gonadotropin-releasing hormone-immunized adult rat. Endocrinology. 1995;136:4035–43.

    CAS  PubMed  Google Scholar 

  30. Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, Allan CM. Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology. 2003;144:509–17.

    Article  CAS  PubMed  Google Scholar 

  31. Hermann BP, Sukhwani M, Hansel MC, Orwig KE. Spermatogonial stem cells in higher primates: are there differences from those in rodents? Reproduction. 2010;139:479–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hagiuda.

Additional information

Capsule The administration of exogenous FSH promotes the recovery from impaired spermatogenesis induced by low-dose doxorubicin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagiuda, J., Ishikawa, H., Kaneko, S. et al. Follicle-stimulating hormone enhances recovery from low-dose doxorubicin-induced spermatogenic disorders in mice. J Assist Reprod Genet 32, 917–923 (2015). https://doi.org/10.1007/s10815-015-0472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0472-8

Keywords

Navigation