Systemic oxidative stress could predict assisted reproductive technique outcome

  • A. Ahelik
  • R. Mändar
  • P. Korrovits
  • P. Karits
  • E. Talving
  • K. Rosenstein
  • M. Jaagura
  • A. Salumets
  • T. Kullisaar
Assisted Reproduction Technologies



Previous studies have indicated that OxS (oxidative stress) may appear as a possible reason for poor ART outcome. Our aim was to study OxS levels in both partners of couples seeking Assisted reproduction Technology (ART).


Altogether 79 couples were recruited. Oxidative DNA damage (8-OHdG) and lipid peroxidation (8-EPI) were measured, and clinical background and ART outcomes were recorded.


Both OxS markers accurately reflected clincal conditions with prominent negative effects attributable to genital tract infections, endometriosis, uterine myoma and smoking. Furthermore, the level of OxS was also affected by partner’s state of health. The highest 8-EPI levels were detected in both partners when biochemically detectable pregnancies did not develop into clinically detectable pregnancies (in women, 97,8 ± 16,7 vs 72.9 ± 22,9, p = 0.007; in men, 89.6 ± 20,4 vs 72,1 ± 22,6, p = 0.049).


To conclude, high grade systemix OxS in both partners may negatively affect the maintenance and outcome of pregnancy. Applying the detection of OxS in ART patients may select patients with higher success rate and/or those who require antioxidant therapy. This would lead to improvement of ART outcome as well as natural fertility.


8-EPI (8-iso Prostaglandin F8-OHdG (8-hydroxy-2’-deoxyguanosine) ART (assisted reproductive technique) Infertility OxS (oxidative stress) ROS (reactive oxygen species) 



The present study was supported by Enterprise Estonia (Grant no. EU 30020), Estonian Ministry of Education and Research (Target Financing SF0180132s08, Institutional Research Funding IUT 20–42, Institutional Research Funding IUT 15–19 and Scientific Collection Financing KOGU-HUMB) and University of Tartu (Grant no. SARMBARENG).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10815_2015_466_MOESM1_ESM.doc (88 kb)
ESM 1 (DOC 88 kb)
10815_2015_466_MOESM2_ESM.doc (42 kb)
ESM 2 (DOC 42 kb)
10815_2015_466_MOESM3_ESM.doc (32 kb)
ESM 3 (DOC 32 kb)


  1. 1.
    Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology. Fertil Steril. 2009;92:1520–4.Google Scholar
  2. 2.
    National Health and Medical Research Council. Ethical guidelines on assisted reproductive technology. Available at: Accessed 2 Feb 2014.
  3. 3.
    Ferraretti AP, Goossens V, de Mouzon J, Bhattacharya S, Castilla JA, Korsak V, et al. Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE. Hum Reprod. 2012;27:2571–84.CrossRefPubMedGoogle Scholar
  4. 4.
    Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Gyllemborg J, Ernst E, et al. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003;18:1265–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27:3–12.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Simon L, Proutski I, Stevenson M, Jennings D, McManus J, Lutton D, et al. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod BioMed Online. 2013;26:68–78.CrossRefPubMedGoogle Scholar
  7. 7.
    Knox CL, Allan JA, Allan JM, Edirisinghe WR, Stenzel D, Lawrence FA, et al. Ureaplasma parvum and Ureaplasma urealyticum are detected in semen after washing before assisted reproductive technology procedures. Fertil Steril. 2003;80:921–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Li MQ, Jin LP. Ovarian stimulation for in vitro fertilization alters the protein profile expression in endometrial secretion. Int J Clin Exp Pathol. 2013;6:1964–7.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Margalioth EJ, Ben-Chetrit A, Gal M, Eldar-Geva T. Investigation and treatment of repeated implantation failure following IVF–ET. Hum Reprod. 2006;2:3036–43.CrossRefGoogle Scholar
  10. 10.
    Fiedler K, Ezcurra D. Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment. Reprod Biol Endocrinol. 2012;10:32.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26:279–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Meseguer M, Martínez-Conejero JA, O’Connor JE, Pellicer A, Remohí J, Garrido N. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008;89:1191–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Montuschi P, Barnes P, Roberts LJ. Insights into oxidative stress: the isoprostanes. Curr Med Chem. 2007;14:703–17.CrossRefPubMedGoogle Scholar
  15. 15.
    Cambi M, Tamburrino L, Marchiani S, Olivito B, Azzari C, Forti G, et al. Development of a specific method to evaluate 8-hydroxy, 2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction. 2013;145:227–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29:297–301.PubMedCentralPubMedGoogle Scholar
  17. 17.
    WHO. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.Google Scholar
  18. 18.
    WHO, editor. Laboratory manual for examination of human semen and sperm–cervical mucus interaction. 4th ed. New York: Cambridge University Press; 1999.Google Scholar
  19. 19.
    Punab M, Lõivukene K, Kermes K, Mändar R. The limit of leucocytospermia from the microbiological viewpoint. Andrologia. 2003;35:271–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenecity in human subjects. Br J Nutr. 2003;90:449–56.CrossRefPubMedGoogle Scholar
  21. 21.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 1999.Google Scholar
  22. 22.
    Sies H. Oxidative stress: oxidants and antioxidants. London: Academic; 1991.Google Scholar
  23. 23.
    Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8:1865–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65:948–56.PubMedGoogle Scholar
  25. 25.
    Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol. 2010;42:1634–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Combelles CMH, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod BioMed Online. 2009;18:864–80.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Rizzo A, Roscino MT, Binetti F, Sciorsci RL. Roles of reactive oxygen species in female reproduction. Reprod Domest Anim. 2011;47:344–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25:287–99.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Sharma I, Dhaliwal L, Saha S, Sangwan S, Dhawan V. Role of 8-iso-prostaglandin F2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil Steril. 2010;94:63–70.CrossRefPubMedGoogle Scholar
  30. 30.
    Bogavac M, Lakic N, Simin N, Nikolic A, Sudji J, Bozin B. Bacterial vaginosis and biomarkers of oxidative stress in amniotic fluid. J Matern Fetal Neonatal Med. 2012;25:1050–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48:425–35.PubMedGoogle Scholar
  32. 32.
    de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3:175–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Benedetti S, Tagliamonte MC, Catalani S, Primiterra M, Canestrari F, De Stefani S, et al. Differences in blood and semen oxidative status in fertile and infertile men, and their relationship with sperm quality. Reprod BioMed Online. 2012;25:300–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function — in sickness and in health. J Androl. 2012;33:1096–106.CrossRefPubMedGoogle Scholar
  35. 35.
    Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25:2415–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Ménézo Y, Entezami F, Lichtblau I, Belloc S, Cohen M, Dale B. Oxidative stress and fertility: incorrect assumptions and ineffective solutions? Zygote. 2014;22(1):80–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol. 2009;71:240–52.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Kullisaar T, Türk S, Punab M, Mändar R. Oxidative stress – cause or consequence of male genital tract disorders? Prostate. 2012;72:977–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Kullisaar T, Türk S, Punab M, Korrovits P, Kisand K, Rehema A, et al. Oxidative stress in leucocytospermic prostatitis patients: preliminary results. Andrologia. 2008;40:161–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Taha EA, Ez-Aldin AM, Sayed SK, Ghandour NM, Mostafa T. Effect of smoking on sperm vitality, DNA integrity, seminal oxidative stress, zinc in fertile men. Urology. 2012;80:822–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Mändar R, Kullisaar T, Borovkova N, Punab M. Sexual intercourse with leucocytospermic men may be a possible booster of oxidative stress in female partners of infertile couples. Andrology. 2013;1:464–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Borovkova N, Korrovits P, Ausmees K, Türk S, Jõers K, Punab M, et al. Influence of sexual intercourse on genital tract microbiota in infertile couples. Anaerobe. 2011;17:414–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Velthut A, Zilmer M, Zilmer K, Kaart T, Karro H, Salumets A. Elevated blood plasma antioxidant status is favourable for achieving IVF/ICSI pregnancy. Reprod BioMed Online. 2013;26:345–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Ahelik
    • 1
    • 2
  • R. Mändar
    • 1
    • 2
  • P. Korrovits
    • 1
    • 2
    • 3
  • P. Karits
    • 4
  • E. Talving
    • 4
  • K. Rosenstein
    • 2
    • 4
  • M. Jaagura
    • 4
  • A. Salumets
    • 2
  • T. Kullisaar
    • 5
  1. 1.Department of Microbiology, Faculty of MedicineUniversity of TartuTartuEstonia
  2. 2.Competence Centre on Health TechnologiesTartuEstonia
  3. 3.Andrology CenterTartu University HospitalTartuEstonia
  4. 4.Nova Vita ClinicTallinnEstonia
  5. 5.Department of Biochemistry, Faculty of MedicineUniversity of TartuTartuEstonia

Personalised recommendations