Skip to main content

Advertisement

Log in

Dysregulation of methylation and expression of imprinted genes in oocytes and reproductive tissues in mice of advanced maternal age

  • Epigenetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate reproductive outcomes in aged compared to young female mice, and determine associated methylation and expression of imprinted genes in reproductive tissues.

Methods

Fetal, placental, and ovarian tissue were collected on d16.5 of pregnancy from young (4–5 weeks) and aged (15 months) mice. Uterine tissue and in vivo matured oocytes were collected from non-pregnant females. Methylation of imprinted genes was determined by restriction enzyme based assays, and transcript abundance of imprinted and nutrient supply genes were analyzed by quantitative PCR (qPCR).

Results

Maternal age was associated with fetal growth restriction and placental overgrowth. In maternally aged mice, methylation was minimally dysregulated in fetal tissue, while placental tissue showed aberrant methylation and transcript abundance of imprinted genes. Ovarian methylation and gene expression was severely dysregulated, although oocyte gene expression was only minimally altered. Abundance of Kcnq1 transcripts was significantly (P < 0.05) increased in oocytes obtained from aged females compared to young females. Gene expression was also severely dysregulated in the uterus, including nutrient transport genes.

Conclusion

Fetal and placental growth abnormalities correspond to aberrant methylation and gene expression in reproductive tissues from maternally aged mice. Significant alterations in gene expression and methylation in the aged ovary suggests that the follicular environment may be compromised. Aberrant methylation and expression of imprinted genes in the aged uterus may contribute to reduced implantation. Maternal age negatively affects imprinted gene methylation and expression in both germ cells and somatic cells of the reproductive tract, contributing to the reduced fertility observed with advanced maternal age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bobrowski RA, Bottoms SF. Underappreciated risks of the elderly multipara. Am J Obstet Gynecol. 1995;172(6):1764–7. discussion 7–70.

    Article  CAS  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention, American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. 2012 Assisted reproductive technology fertility clinic success rates report. Atlanta: US Department of Health and Human Services; 2013.

    Google Scholar 

  3. Cleary-Goldman J, Malone FD, Vidaver J, Ball RH, Nyberg DA, Comstock CH, et al. Impact of maternal age on obstetric outcome. Obstet Gynecol. 2005;105(5 Pt 1):983–90.

    Article  PubMed  Google Scholar 

  4. Dew JE, Don RA, Hughes GJ, Johnson TC, Steigrad SJ. The influence of advanced age on the outcome of assisted reproduction. J Assist Reprod Genet. 1998;15(4):210–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Porreco RP, Harden L, Gambotto M, Shapiro H. Expectation of pregnancy outcome among mature women. Am J Obstet Gynecol. 2005;192(1):38–41.

    Article  PubMed  Google Scholar 

  6. Liu L, Keefe DL. Ageing-associated aberration in meiosis of oocytes from senescence-accelerated mice. Hum Reprod. 2002;17(10):2678–85.

    Article  CAS  PubMed  Google Scholar 

  7. Tarin JJ, Perez-Albala S, Cano A. Cellular and morphological traits of oocytes retrieved from aging mice after exogenous ovarian stimulation. Biol Reprod. 2001;65(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  8. Carnevale EM, Bergfelt DR, Ginther OJ. Follicular activity and concentrations of FSH and LH associated with senescence in mares. Anim Reprod Sci. 1994;35(3–4):231–46.

    Article  CAS  Google Scholar 

  9. Blaha GC. Effect of age of the donor and recipient on the development of transferred golden hamster ova. Anat Rec. 1964;150:413–6.

    Article  CAS  PubMed  Google Scholar 

  10. Schramm RD, Paprocki AM, Bavister BD. Features associated with reproductive ageing in female rhesus monkeys. Hum Reprod. 2002;17(6):1597–603.

    Article  PubMed  Google Scholar 

  11. Carnevale EM, Ginther OJ. Relationships of age to uterine function and reproductive efficiency in mares. Theriogenology. 1992;37(5):1101–15.

    Article  CAS  PubMed  Google Scholar 

  12. Talbert GB, Krohn PL. Effect of maternal age on viability of ova and uterine support of pregnancy in mice. J Reprod Fertil. 1966;11(3):399–406.

    Article  CAS  PubMed  Google Scholar 

  13. Eppig JJ, O’Brien M. In vitro maturation and fertilization of oocytes isolated from aged mice: a strategy to rescue valuable genetic resources. J Assist Reprod Genet. 1995;12(4):269–73.

    Article  CAS  PubMed  Google Scholar 

  14. Steuerwald NM, Bermudez MG, Wells D, Munne S, Cohen J. Maternal age-related differential global expression profiles observed in human oocytes. Reprod BioMed Online. 2007;14(6):700–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet. 2004;13(19):2263–78.

    Article  CAS  PubMed  Google Scholar 

  16. Bromfield J, Messamore W, Albertini DF. Epigenetic regulation during mammalian oogenesis. Reprod Fertil Dev. 2008;20(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  17. Fowden AL, Sibley C, Reik W, Constancia M. Imprinted genes, placental development and fetal growth. Horm Res. 2006;65 Suppl 3:50–8.

    Article  CAS  PubMed  Google Scholar 

  18. Moore T, Reik W. Genetic conflict in early development: parental imprinting in normal and abnormal growth. Rev Reprod. 1996;1(2):73–7.

    Article  CAS  PubMed  Google Scholar 

  19. Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Physiol. 2002;192(3):245–58.

    Article  CAS  PubMed  Google Scholar 

  20. Denomme MM, Mann MR. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction. 2012;144(4):393–409.

    Article  CAS  PubMed  Google Scholar 

  21. Doornbos ME, Maas SM, McDonnell J, Vermeiden JP, Hennekam RC. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum Reprod. 2007;22(9):2476–80.

    Article  PubMed  Google Scholar 

  22. Koo YJ, Ryu HM, Yang JH, Lim JH, Lee JE, Kim MY, et al. Pregnancy outcomes according to increasing maternal age. Taiwan J Obstet Gynecol. 2012;51(1):60–5.

    Article  PubMed  Google Scholar 

  23. Tough SC, Newburn-Cook C, Johnston DW, Svenson LW, Rose S, Belik J. Delayed childbearing and its impact on population rate changes in lower birth weight, multiple birth, and preterm delivery. Pediatrics. 2002;109(3):399–403.

    Article  PubMed  Google Scholar 

  24. Wilsher S, Allen WR. The effects of maternal age and parity on placental and fetal development in the mare. Equine Vet J. 2003;35(5):476–83.

    Article  CAS  PubMed  Google Scholar 

  25. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals et al. Guide for the care and use of laboratory animals. 8th ed. Washington: National Academies Press; 2011.

    Google Scholar 

  26. Eppig JJ, Schroeder AC, O’Brien MJ. Developmental capacity of mouse oocytes matured in vitro: effects of gonadotrophic stimulation, follicular origin and oocyte size. J Reprod Fertil. 1992;95(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  27. Hogan B. Manipulating the mouse embryo: a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1994.

    Google Scholar 

  28. Akiyama T, Nagata M, Aoki F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice. Proc Natl Acad Sci U S A. 2006;103(19):7339–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jurisicova A, Rogers I, Fasciani A, Casper RF, Varmuza S. Effect of maternal age and conditions of fertilization on programmed cell death during murine preimplantation embryo development. Mol Hum Reprod. 1998;4(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  30. Pan H, Ma P, Zhu W, Schultz RM. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol. 2008;316(2):397–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tarin JJ, Gomez-Piquer V, Pertusa JF, Hermenegildo C, Cano A. Association of female aging with decreased parthenogenetic activation, raised MPF, and MAPKs activities and reduced levels of glutathione S-transferases activity and thiols in mouse oocytes. Mol Reprod Dev. 2004;69(4):402–10.

    Article  CAS  PubMed  Google Scholar 

  32. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: final data for 2006. Natl Vital Stat Rep. 2009;57(14):1–134.

    PubMed  Google Scholar 

  33. Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod. 2013;88(5):111.

    Article  PubMed  Google Scholar 

  34. Paczkowski M, Yuan Y, Fleming-Waddell J, Bidwell CA, Spurlock D, Krisher RL. Alterations in the transcriptome of porcine oocytes derived from prepubertal and cyclic females is associated with developmental potential. J Anim Sci. 2011;89(11):3561–71.

    Article  CAS  PubMed  Google Scholar 

  35. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.

    CAS  PubMed  Google Scholar 

  36. Apostolidou S, Abu-Amero S, O’Donoghue K, Frost J, Olafsdottir O, Chavele KM, et al. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med. 2007;85(4):379–87.

    Article  CAS  PubMed  Google Scholar 

  37. Charalambous M, Smith FM, Bennett WR, Crew TE, Mackenzie F, Ward A. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci U S A. 2003;100(14):8292–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Haavaldsen C, Samuelsen SO, Eskild A. The association of maternal age with placental weight: a population-based study of 536,954 pregnancies. Br J Obstet Gynecol. 2011;118(12):1470–6.

    Article  CAS  Google Scholar 

  40. Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM. Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev Biol. 2007;7:53.

    Article  PubMed Central  PubMed  Google Scholar 

  41. McMinn J, Wei M, Schupf N, Cusmai J, Johnson EB, Smith AC, et al. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta. 2006;27(6–7):540–9.

    Article  CAS  PubMed  Google Scholar 

  42. Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur J, et al. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics. 2009;4(4):235–40.

    Article  CAS  PubMed  Google Scholar 

  43. Eggermann T, Begemann M, Gogiel M, Palomares M, Vallespin E, Fernandez L, et al. Heterogeneous growth patterns in carriers of chromosome 7p12.2 imbalances affecting GRB10. Am J Med Genet A. 2012;158A(11):2815–9.

    Article  PubMed  Google Scholar 

  44. Joyce CA, Sharp A, Walker JM, Bullman H, Temple IK. Duplication of 7p12.1-p13, including GRB10 and IGFBP1, in a mother and daughter with features of Silver-Russell syndrome. Hum Genet. 1999;105(3):273–80.

    Article  CAS  PubMed  Google Scholar 

  45. Chetkowski RJ, Rode RA, Burruel V, Nass TE. The effect of pituitary suppression and the women’s age on embryo viability and uterine receptivity. Fertil Steril. 1991;56(6):1095–103.

    CAS  PubMed  Google Scholar 

  46. Sterzik K, Dallenbach C, Schneider V, Sasse V, Dallenbach-Hellweg G. In vitro fertilization: the degree of endometrial insufficiency varies with the type of ovarian stimulation. Fertil Steril. 1988;50(3):457–62.

    CAS  PubMed  Google Scholar 

  47. Seoud MA, Nassar AH, Usta IM, Melhem Z, Kazma A, Khalil AM. Impact of advanced maternal age on pregnancy outcome. Am J Perinatol. 2002;19(1):1–8.

    Article  PubMed  Google Scholar 

  48. Jones CT, Parer JT. The effect of alterations in placental blood flow on the growth of and nutrient supply to the fetal guinea-pig. J Physiol. 1983;343:525–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Saintonge J, Rosso P. Placental blood flow and transfer of nutrient analogs in large, average, and small guinea pig littermates. Pediatr Res. 1981;15(2):152–6.

    Article  CAS  PubMed  Google Scholar 

  50. Owens JA, Falconer J, Robinson JS. Effect of restriction of placental growth on fetal and utero-placental metabolism. J Dev Physiol. 1987;9(3):225–38.

    CAS  PubMed  Google Scholar 

  51. Belkacemi L, Jelks A, Chen CH, Ross MG, Desai M. Altered placental development in undernourished rats: role of maternal glucocorticoids. Reprod Biol Endocrinol. 2011;9:105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Long NM, Vonnahme KA, Hess BW, Nathanielsz PW, Ford SP. Effects of early gestational undernutrition on fetal growth, organ development, and placentomal composition in the bovine. J Anim Sci. 2009;87(6):1950–9.

    Article  CAS  PubMed  Google Scholar 

  53. Constancia M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci U S A. 2005;102(52):19219–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. Bioessays. 1991;13(11):569–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Paczkowski.

Additional information

Capsule Maternal age dysregulates the methylation and expression patterns of imprinted genes in reproductive tissues of mice, resulting in abnormal fetal and placental development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paczkowski, M., Schoolcraft, W.B. & Krisher, R.L. Dysregulation of methylation and expression of imprinted genes in oocytes and reproductive tissues in mice of advanced maternal age. J Assist Reprod Genet 32, 713–723 (2015). https://doi.org/10.1007/s10815-015-0463-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0463-9

Keywords

Navigation