Skip to main content
Log in

Chromosomal characteristics at cleavage and blastocyst stages from the same embryos

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate chromosomal characteristics in the same embryos at cleavage and blastocyst stage.

Methods

Six PGD/PGS cycles were retrospective studied, including five chromosomal translocation PGD cycles and one recurrent abortion PGS cycle. The cleavage embryos were biopsied one blastomere at day 3, followed by blastocyst culture. Trophectoderm cell biopsy was performed when embryos developed into the blastocyst stage. Whole genome amplification and 24-chromosomal analysis by CGH/SNP microarray was performed on each blastomere and trophectoderm cells.

Results

After PGD/PGS, only one couple had no euploid embryos to transfer. Five couples delivered a healthy, balanced-karyotype baby. A total of 18 embryos had both blastomere and trophectoderm cell reliable results available. Of the 18 embryos, eleven embryos contained identical chromosomes from cleavage stage to blastocyst stage and six embryos contained almost identical chromosomes . Only one embryo presented opposite chromosomal results for the cleavage and blastocyst stage, with abnormal chromosomes in the blastomere but normal chromosomes in trophectoderm cells.

Conclusions

Most embryos maintain chromosomal stability during embryonic development. Compared to cleavage stage, blastocyst stage may provide more reliable aneuploidy results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Munné S. Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod Biomed Online. 2006;12:234–53.

    Article  PubMed  Google Scholar 

  2. Rius M, Daina G, Obradors A, Ramos L, Velilla E, Fernández S, et al. Comprehensive embryo analysis of advanced maternal age-related aneuploidies and mosaicism by short comparative genomic hybridization. Fertil Steril. 2011;95:413–6.

    Article  PubMed  Google Scholar 

  3. Treff NR, Su J, Tao X, Levy B, Scott Jr RT, et al. Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays. Fertil Steril. 2010;94:2017–21.

    Article  CAS  PubMed  Google Scholar 

  4. Christopikou D, Tsorva E, Economou K, Shelley P, Davies S, Mastrominas M, et al. Polar body analysis by array comparative genomic hybridization accurately predicts aneuploidies of maternal meiotic origin in cleavage stage embryos of women of advanced maternal age. Hum Reprod. 2013;28:1426–34.

    Article  CAS  PubMed  Google Scholar 

  5. Fragouli E, Wells D, Thornhill A, Serhal P, Faed MJ, Harper JC, et al. Comparative genomic hybridization analysis of human oocytes and polar bodies. Hum Reprod. 2006;21:2319–28.

    Article  CAS  PubMed  Google Scholar 

  6. Munné S, Weier HU, Grifo J, Cohen J. Chromosome mosaicism in human embryos. Biol Reprod. 1994;51:373–9.

    Article  PubMed  Google Scholar 

  7. Wells D. Embryo aneuploidy and the role of morphological and genetic screening. Reprod Biomed Online. 2010;21:274–7.

    Article  PubMed  Google Scholar 

  8. Huang J, Yan L, Fan W, Zhao N, Zhang Y, Tang F, et al. Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos. Fertil Steril. 2014;102:1685–91.

    Article  CAS  PubMed  Google Scholar 

  9. Mertzanidou A, Spits C, Nguyen HT, Van de Velde H, Sermon K. Evolution of aneuploidy up to Day 4 of human preimplantation development. Hum Reprod. 2013;28:1716–24.

    Article  CAS  PubMed  Google Scholar 

  10. Scott KL, Hong KH, Scott Jr RT. Selecting the optimal time to perform biopsy for preimplantation genetic testing. Fertil Steril. 2013;100:608–14.

    Article  PubMed  Google Scholar 

  11. Capalbo A, Bono S, Spizzichino L, Biricik A, Baldi M, Colamaria S, et al. Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development. Hum Reprod. 2013;28:509–18.

    Article  CAS  PubMed  Google Scholar 

  12. Fiorentino F, Spizzichino L, Bono S, Biricik A, Kokkali G, Rienzi L, et al. PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization. Hum Reprod. 2011;26:1925–35.

    Article  CAS  PubMed  Google Scholar 

  13. Gutierrez-Mateo C, Colls P, Sanchez-Garcia J, Escudero T, Prates R, Ketterson K, et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2011;95:953–8.

    Article  CAS  PubMed  Google Scholar 

  14. Handyside AH. PGD and aneuploidy screening for 24 chromosomes by genome-wide SNP analysis: seeing the wood and the trees. Reprod Biomed Online. 2011;23:686–91.

    Article  CAS  PubMed  Google Scholar 

  15. Harton G, Braude P, Lashwood A, Schmutzler A, Traeger-Synodinos J, Wilton L, et al. ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum Reprod. 2011;26:14–24.

    Article  CAS  PubMed  Google Scholar 

  16. Bazrgar M, Gourabi H, Valojerdi MR, Yazdi PE, Baharvand H. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells. Stem Cells Dev. 2013;22:2449–56.

    Article  CAS  PubMed  Google Scholar 

  17. Northrop LE, Treff NR, Levy B, Scott Jr RT. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16:590–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92:890–6.

    Article  PubMed  Google Scholar 

  19. Munné S, Velilla E, Colls P, Garcia Bermudez M, Vemuri MC, Steuerwald N, et al. Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil Steril. 2005;84:1328–34.

    Article  PubMed  Google Scholar 

  20. Scott Jr RT, Ferry KM, Forman EJ, Zhao T, Treff NR. Cleavage stage biopsy significantly impairs human embryonic implantation potential whereas blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100:624–30.

    Article  PubMed  Google Scholar 

  21. Kokkali G, Traeger-Synodinos J, Vrettou C, Stavrou D, Jones GM, Cram DS, et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of beta-thalassaemia: a pilot study. Hum Reprod. 2007;22:1443–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by Peking-Tsinghua Center for Life Sciences and the National Science Foundation of China (Grant No. 81070534)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Additional information

Capsule Most embryos maintain chromosomal stability during embryonic development. Compared to cleavage stage, blastocyst stage may provide more reliable aneuploidy results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhao, N., Wang, X. et al. Chromosomal characteristics at cleavage and blastocyst stages from the same embryos. J Assist Reprod Genet 32, 781–787 (2015). https://doi.org/10.1007/s10815-015-0450-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0450-1

Keywords

Navigation