Skip to main content
Log in

Contemporary evidence on the physiological role of reactive oxygen species in human sperm function

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) play an important role in male fertility. Overproduction of reactive oxygen species (ROS) has been associated with a variety of male fertility complications, including leukocytospermia, varicocele and idiopathic infertility. The subsequent oxidative insult to spermatozoa can manifest as insufficient energy metabolism, lipid peroxidation and DNA damage, leading to loss of motility and viability. However, various studies have demonstrated that physiological amounts of ROS play important roles in the processes of spermatozoa maturation, capacitation, hyperactivation and acrosome reaction. It is therefore crucial to define and understand the delicate oxidative balance in male reproductive cells and tissues for a better understanding of both positive as well as negative impact of ROS production on the fertilizing ability. This review will discuss the specific physiological roles, mechanisms of action and effects that ROS have on the acquisition of structural integrity and physiological activity of spermatozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jarow JP, Sharlip ID, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. J Urol. 2002;167(5):2138–44.

    Article  PubMed  Google Scholar 

  2. Agarwal A, Sharma RK, Sharma R, Assidi M, Abuzenadah AM, Alshahrani S, et al. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014;12:33.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Khosrowbeygi A, Zarghami N. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters. BMC Clin Pathol. 2007;7:6.

    Article  PubMed Central  PubMed  Google Scholar 

  4. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol. 1943;138:512–8.

    CAS  Google Scholar 

  5. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of ROS by human spermatozoa. J Reprod Fertil. 1987;81:459–69.

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal A, Mulgund A, Sharma R, Sabanegh E. Mechanisms of oligozoospermia: an oxidative stress perspective. Syst Biol Reprod Med. 2014;60(4):206–16.

    Article  PubMed  Google Scholar 

  7. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12:45.

    Article  PubMed Central  PubMed  Google Scholar 

  8. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod. 1997;2(1):48–54.

    Article  PubMed  Google Scholar 

  9. de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14(2):157–66.

    Article  PubMed  Google Scholar 

  10. Aitken RJ, Irvine DS, Wu FC. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol. 1991;164(2):542–51.

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez R, Sepulveda C, Risopatron J, Villegas J, Giojalas LC. Human sperm chemotaxis depends on critical levels of reactive oxygen species. Fertil Steril. 2010;93(1):150–3.

    Article  CAS  PubMed  Google Scholar 

  12. Ford WC. Regulation of sperm function by reactive oxygen species. Hum Reprod Update. 2004;10(5):387–99.

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  14. Koppenol WH. The Haber-Weiss cycle—70 years later. Redox Rep. 2001;6(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  15. Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta. 1999;1411(2–3):273–89.

    Article  CAS  PubMed  Google Scholar 

  16. Halliwell B, Gutteridge JM. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986;246(2):501–14.

    Article  CAS  PubMed  Google Scholar 

  17. Goldfarb AH. Nutritional antioxidants as therapeutic and preventive modalities in exercise-induced muscle damage. Can J Appl Physiol. 1999;24(3):249–66.

    Article  CAS  PubMed  Google Scholar 

  18. Smith DC, Barratt CL, Williams MA. The characterisation of non-sperm cells in the ejaculates of fertile men using transmission electron microscopy. Andrologia. 1989;21(4):319–33.

    Article  CAS  PubMed  Google Scholar 

  19. Fisher HM, Aitken RJ. Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. J Exp Zool. 1997;277(5):390–400.

    Article  CAS  PubMed  Google Scholar 

  20. Whittington K, Ford WC. Relative contribution of leukocytes and of spermatozoa to reactive oxygen species production in human sperm suspensions. Int J Androl. 1999;22(4):229–35.

    Article  CAS  PubMed  Google Scholar 

  21. Saleh RA, Agarwal A, Kandirali E, Sharma RK, Thomas AJ, Nada EA, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78(6):1215–24.

    Article  PubMed  Google Scholar 

  22. Shekarriz M, Sharma RK, Thomas Jr AJ, Agarwal A. Positive myeloperoxidase staining (Endtz test) as an indicator of excessive reactive oxygen species formation in semen. J Assist Reprod Genet. 1995;12(2):70–4.

    Article  CAS  PubMed  Google Scholar 

  23. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.

    Article  PubMed  Google Scholar 

  24. Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg HR, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635–42.

    Article  CAS  PubMed  Google Scholar 

  25. Wolff H, Politch JA, Martinez A, Haimovici F, Hill JA, Anderson DJ. Leukocytospermia is associated with poor semen quality. Fertil Steril. 1990;53(3):528–36.

    CAS  PubMed  Google Scholar 

  26. Mahfouz R, Sharma R, Thiyagarajan A, Kale V, Gupta S, Sabanegh E, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94(6):2141–6.

    Article  CAS  PubMed  Google Scholar 

  27. Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.

    CAS  PubMed  Google Scholar 

  28. Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62(2):387–93.

    CAS  PubMed  Google Scholar 

  29. Potts JM, Pasqualotto FF. Seminal oxidative stress in patients with chronic prostatitis. Andrologia. 2003;35(5):304–8.

    Article  CAS  PubMed  Google Scholar 

  30. Babior BM. NADPH oxidase: an update. Blood. 1999;93(5):1464–76.

    CAS  PubMed  Google Scholar 

  31. Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63(6):1143–57.

    CAS  PubMed  Google Scholar 

  32. Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.

    Article  CAS  PubMed  Google Scholar 

  33. Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B, et al. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47(4):468–82.

    Article  CAS  PubMed  Google Scholar 

  34. Aitken J, Krausz C, Buckingham D. Relationships between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol Reprod Dev. 1994;39(3):268–79.

    Article  CAS  PubMed  Google Scholar 

  35. Storey BT, Alvarez JG, Thompson KA. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH. Mol Reprod Dev. 1998;49(4):400–7.

    Article  CAS  PubMed  Google Scholar 

  36. Gil-Guzman E, Ollero M, Lopez MC, Sharma RK, Alvarez JG, Thomas Jr AJ, et al. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod. 2001;16(9):1922–30.

    Article  CAS  PubMed  Google Scholar 

  37. Gavella M, Lipovac V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl. 1992;28(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  38. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93(8):3199–207.

    Article  CAS  PubMed  Google Scholar 

  39. de Lamirande E, Lamothe G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic Biol Med. 2009;46(4):502–10.

    Article  PubMed  Google Scholar 

  40. Hipler UC, Görnig M, Hipler B, Römer W, Schreiber G. Stimulation and scavestrogen-induced inhibition of reactive oxygen species generated by rat sertoli cells. Arch Androl. 2000;44(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  41. Lilja H, Lundwall A. Molecular cloning of epididymal and seminal vesicular transcripts encoding a semenogelin-related protein. Proc Natl Acad Sci U S A. 1992;89(10):4559–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lundwall A, Bjartell A, Olsson AY, Malm J. Semenogelin I and II, the predominant human seminal plasma proteins, are also expressed in non-genital tissues. Mol Hum Reprod. 2002;8(9):805–10.

    Article  CAS  PubMed  Google Scholar 

  43. Hamada A, Sharma R, du Plessis SS, Willard B, Yadav SP, Sabanegh E, et al. Two-dimensional differential in-gel electrophoresis-based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99(5):1216–26.

    Article  CAS  PubMed  Google Scholar 

  44. Chatterjee S, Laloraya M, Kumar PG. Free radical-induced liquefaction of ejaculated human semen: a new dimension in semen biochemistry. Arch Androl. 1997;38(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  45. Du Plessis SS, Agarwal A, Mohanty G, Van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17:1–6.

    Article  Google Scholar 

  46. de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3(3):175–94.

    Article  PubMed  Google Scholar 

  47. Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J Androl. 1991;12(5):323–30.

    CAS  PubMed  Google Scholar 

  48. Guraya SS. Cellular and molecular biology of capacitation and acrosome reaction in spermatozoa. Int Rev Cytol. 2000;199:1–64.

    Article  CAS  PubMed  Google Scholar 

  49. López-González I, Torres-Rodríguez P, Sánchez-Carranza O, Solís-López A, Santi CM, Darszon A, et al. Membrane hyperpolarization during human sperm capacitation. Mol Hum Reprod. 2014;20(7):619–29.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Breitbart H. Signaling pathways in sperm capacitation and acrosome reaction. Cell Mol Biol. 2003;49(3):321–7.

    CAS  PubMed  Google Scholar 

  51. Liguori L, de Lamirande E, Minelli A, Gagnon C. Various protein kinases regulate human sperm acrosome reaction and the associated phosphorylation of Tyr residues and of the Thr-Glu-Tyr motif. Mol Hum Reprod. 2005;11(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  52. Olds-Clarke P. Unresolved issues in mammalian fertilization. Int Rev Cytol. 2003;232:129–84.

    Article  CAS  PubMed  Google Scholar 

  53. de Lamirande E, O’Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta. 2008;1784(1):106–15.

    Article  PubMed  Google Scholar 

  54. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.

    CAS  PubMed  Google Scholar 

  55. Leclerc P, de Lamirande E, Gagnon C. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med. 1997;22(4):643–56.

    Article  CAS  PubMed  Google Scholar 

  56. Donà G, Fiore C, Tibaldi E, Frezzato F, Andrisani A, Ambrosini G, et al. Endogenous reactive oxygen species content and modulation of tyrosine phosphorylation during sperm capacitation. Int J Androl. 2011;34(5 Pt 1):411–9.

    Article  PubMed  Google Scholar 

  57. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998;111(Pt 5):645–56.

    CAS  PubMed  Google Scholar 

  58. Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3′,5′monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod. 1996;55(3):684–92.

    Article  CAS  PubMed  Google Scholar 

  59. Dimitriadis F, Giannakis D, Pardalidis N, Zikopoulos K, Paraskevaidis E, Giotitsas N, et al. Effects of phosphodiesterase-5 inhibitors on sperm parameters and fertilizing capacity. Asian J Androl. 2008;10(1):115–33.

    Article  CAS  PubMed  Google Scholar 

  60. Lefièvre L, Jha KN, de Lamirande E, Visconti PE, Gagnon C. Activation of protein kinase A during human sperm capacitation and acrosome reaction. J Androl. 2002;23(5):709–16.

    PubMed  Google Scholar 

  61. Breitbart H. Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol. 2002;187(1–2):139–44.

    Article  CAS  PubMed  Google Scholar 

  62. Leclerc P, de Lamirande E, Gagnon C. Interaction between Ca2+, cyclic 3′,5′ adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation. J Androl. 1998;19(4):434–43.

    CAS  PubMed  Google Scholar 

  63. Hecht D, Zick Y. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun. 1992;188(2):773–9.

    Article  CAS  PubMed  Google Scholar 

  64. de Lamirande E, Harakat A, Gagnon C. Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl. 1998;19(2):215–25.

    PubMed  Google Scholar 

  65. Donà G, Fiore C, Andrisani A, Ambrosini G, Brunati A, Ragazzi E, et al. Evaluation of correct endogenous reactive oxygen species content for human sperm capacitation and involvement of the NADPH oxidase system. Hum Reprod. 2011;26(12):3264–73.

    Article  PubMed  Google Scholar 

  66. de Lamirande E, Lamothe G, Villemure M. Control of superoxide and nitric oxide formation during human sperm capacitation. Free Radic Biol Med. 2009;46(10):1420–7.

    Article  PubMed  Google Scholar 

  67. Herrero MB, de Lamirande E, Gagnon C. Nitric oxide regulates human sperm capacitation and protein-tyrosine phosphorylation in vitro. Biol Reprod. 1999;61(3):575–81.

    Article  CAS  PubMed  Google Scholar 

  68. Revelli A, Soldati G, Costamagna C, Pellerey O, Aldieri E, Massobrio M, et al. Follicular fluid proteins stimulate nitric oxide (NO) synthesis in human sperm: a possible role for NO in acrosomal reaction. J Cell Physiol. 1999;178(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  69. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine S. On the cellular mechanisms by which the bicarbonate ion mediates the extragenomic action of progesterone on human spermatozoa. Biol Reprod. 1998;58(1):186–96.

    Article  CAS  PubMed  Google Scholar 

  70. Demaurex N, Downey GP, Waddell TK, Grinstein S. Intracellular pH regulation during spreading of human neutrophils. J Cell Biol. 1996;133(6):1391–402.

    Article  CAS  PubMed  Google Scholar 

  71. O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med. 2006;41(4):528–40.

    Article  PubMed  Google Scholar 

  72. O’Flaherty C, de Lamirande E, Gagnon C. Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med. 2006;40(6):1045–55.

    Article  PubMed  Google Scholar 

  73. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351(Pt 2):289–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79(1):143–80.

    CAS  PubMed  Google Scholar 

  75. Zhou G, Bao ZQ, Dixon JE. Components of a new human protein kinase signal transduction pathway. J Biol Chem. 1995;270(21):12665–9.

    Article  CAS  PubMed  Google Scholar 

  76. O’Flaherty C, de Lamirande E, Gagnon C. Reactive oxygen species and protein kinases modulate the level of phospho-MEK-like proteins during human sperm capacitation. Biol Reprod. 2005;73(1):94–105.

    Article  PubMed  Google Scholar 

  77. Thundathil J, de Lamirande E, Gagnon C. Different signal transduction pathways are involved during human sperm capacitation induced by biological and pharmacological agents. Mol Hum Reprod. 2002;8(9):811–6.

    Article  CAS  PubMed  Google Scholar 

  78. de Lamirande E, Gagnon C. The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol Hum Reprod. 2002;8(2):124–35.

    Article  PubMed  Google Scholar 

  79. Thundathil J, de Lamirande E, Gagnon C. Nitric oxide regulates the phosphorylation of the threonine-glutamine-tyrosine motif in proteins of human spermatozoa during capacitation. Biol Reprod. 2003;68(4):1291–8.

    Article  CAS  PubMed  Google Scholar 

  80. O’Flaherty C, de Lamirande E, Gagnon C. Phosphorylation of the Arginine-X-X-(Serine/Threonine) motif in human sperm proteins during capacitation: modulation and protein kinase A dependency. Mol Hum Reprod. 2004;10(5):355–63.

    Article  PubMed  Google Scholar 

  81. Nauc V, De Lamirande E, Leclerc P, Gagnon C. Inhibitors of phosphoinositide 3-kinase, LY294002 and wortmannin, affect sperm capacitation and associated phosphorylation of proteins differently: Ca2+-dependent divergences. J Androl. 2004;25(4):573–85.

    CAS  PubMed  Google Scholar 

  82. Wymann MP, Marone R. Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol. 2005;17(2):141–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ichikawa T, Oeda T, Ohmori H, Schill WB. Reactive oxygen species influence the acrosome reaction but not acrosin activity in human spermatozoa. Int J Androl. 1999;22(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  84. Talbot P, Chacon RS. A triple-stain technique for evaluating normal acrosome reactions of human sperm. J Exp Zool. 1981;215(2):201–8.

    Article  CAS  PubMed  Google Scholar 

  85. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108(Pt 5):2017–25.

    CAS  PubMed  Google Scholar 

  86. Griveau JF, Renard P, Le Lannou D. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl. 1995;18(2):67–74.

    Article  CAS  PubMed  Google Scholar 

  87. de Lamirande E, Tsai C, Harakat A, Gagnon C. Involvement of reactive oxygen species in human sperm arcosome reaction induced by A23187, lysophosphatidylcholine, and biological fluid ultrafiltrates. J Androl. 1998;19(5):585–94.

    PubMed  Google Scholar 

  88. Luconi M, Bonaccorsi L, Krausz C, Gervasi G, Forti G, Baldi E. Stimulation of protein tyrosine phosphorylation by platelet-activating factor and progesterone in human spermatozoa. Mol Cell Endocrinol. 1995;108(1–2):35–42.

    Article  CAS  PubMed  Google Scholar 

  89. Vijayaraghavan S, Goueli SA, Davey MP, Carr DW. Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J Biol Chem. 1997;272(8):4747–52.

    Article  CAS  PubMed  Google Scholar 

  90. Tan CM, Xenoyannis S, Feldman RD. Oxidant stress enhances adenylyl cyclase activation. Circ Res. 1995;77(4):710–7.

    Article  CAS  PubMed  Google Scholar 

  91. Gopalakrishna R, McNeill TH, Elhiani AA, Gundimeda U. Methods for studying oxidative regulation of protein kinase C. Methods Enzymol. 2013;528:79–98.

    Article  CAS  PubMed  Google Scholar 

  92. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid. J Physiol Pharmacol. 2013;64(4):409–21.

    CAS  PubMed  Google Scholar 

  93. Sawada M, Carlson JC. Rapid plasma membrane changes in superoxide radical formation, fluidity, and phospholipase A2 activity in the corpus luteum of the rat during induction of luteolysis. Endocrinology. 1991;128(6):2992–8.

    Article  CAS  PubMed  Google Scholar 

  94. Goldman R, Ferber E, Zort U. Reactive oxygen species are involved in the activation of cellular phospholipase A2. FEBS Lett. 1992;309(2):190–2.

    Article  CAS  PubMed  Google Scholar 

  95. Zor U, Ferber E, Gergely P, Szücs K, Dombrádi V, Goldman R. Reactive oxygen species mediate phorbol ester-regulated tyrosine phosphorylation and phospholipase A2 activation: potentiation by vanadate. Biochem J. 1993;295(Pt 3):879–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Xu J, Yu S, Sun AY, Sun GY. Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radic Biol Med. 2003;34(12):1531–43.

    Article  CAS  PubMed  Google Scholar 

  97. Chen SJ, Allam JP, Duan YG, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288(1):191–9.

    Article  CAS  PubMed  Google Scholar 

  98. Das S, Chattopadhyay R, Jana SK, Narendra BK, Chakraborty C, Chakravarty B, et al. Cut-off value of reactive oxygen species for predicting semen quality and fertilization outcome. Syst Biol Reprod Med. 2008;54(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  99. Desai N, Sharma R, Makker K, Sabanegh E, Agarwal A. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2009;92(5):1626–31.

    Article  PubMed  Google Scholar 

  100. Kashou AH, Sharma R, Agarwal A. Assessment of oxidative stress in sperm and semen. Methods Mol Biol. 2013;927:351–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the financial support from the Center for Reproductive Medicine, Cleveland Clinic Foundation.

Disclosure

The authors declare that they have no relevant financial or competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal.

Additional information

Capsule This review discusses specific roles, mechanisms of action, and effects of reactive oxygen species (ROS) on the acquisition of structural and physiological properties of mammalian spermatozoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du Plessis, S.S., Agarwal, A., Halabi, J. et al. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet 32, 509–520 (2015). https://doi.org/10.1007/s10815-014-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0425-7

Keywords

Navigation