Skip to main content
Log in

Expression pattern of glucose metabolism genes correlate with development rate of buffalo oocytes and embryos in vitro under low oxygen condition

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study evaluates the effect of low oxygen conditions (5 Vs 20 %) on buffalo embryo development. Expression patterns of key glucose metabolism genes (HK, PFK, LDH, PDH, G6PDH and Glut1) were assessed in buffalo oocytes and embryos cultured at 5 and 20 % oxygen and correlated with development rate.

Methods

Maturation rate was observed by determining MII stages by Aceto-orcein method and blastocyst formation was observed at 7 day post insemination (dpi). Expression levels of genes were determined by real time PCR in oocytes / embryos at 5 and 20 % O2.

Results

Oocyte maturation and blastocyst formation rates were significantly higher at 5 % O2 as compared to 20 % O2 (P < 0.05). The expression pattern of glycolytic genes (HK, PFK and G6PDH) indicated that oocytes and embryos under 5 % O2 tend to follow anaerobic glycolysis and pentose phosphate pathways to support optimum embryo development. Under 20 % O2, oocytes and embryos had high expression of PDH indicating higher oxidative phosphorylation. Further, less G6PDH expression at 20 % O2 was indicative of lower pentose phosphate activity. Higher expression of LDH was observed in oocytes and embryos under 20 % O2 indicating sub-optimal culture conditions. High Glut1 activity was observed in the oocytes / embryos at 5 % O2, indicative of high glucose uptake correlating with high expression of glycolytic genes.

Conclusion

The expression patterns of glucose metabolism genes could be a valuable indicator of the development potential of oocytes and embryos. The study indicates the importance of reduced oxygen conditions for production of good quality embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bavister B. Oxygen concentration and preimplantation development. Reprod Biomed Online. 2004;9:484–6.

    Article  PubMed  Google Scholar 

  2. Van Soom A, Yuan YQ, Peelman LJ, de Matos DG, Dewulf J, Laevens H, et al. Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology. 2002;57:1453–65.

    Article  PubMed  Google Scholar 

  3. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62:1186–97.

    Article  CAS  PubMed  Google Scholar 

  4. Du ZF, Wales RG. Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations. Reprod Fertil Dev. 1993;5:383–93.

    Article  CAS  PubMed  Google Scholar 

  5. Hashimoto S, Minami N, Takakura R, Yamada M, Imai H, Kashima N. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes. Mol Reprod Dev. 2000;57:353–60.

    Article  CAS  PubMed  Google Scholar 

  6. Czyzyk-Krzeska MF. Molecular aspects of oxygen sensing in physiological adaptation to hypoxia. Respir Physiol. 1997;100:99–111.

    Article  Google Scholar 

  7. Wengner RH, Gassman M. Oxygen and the hypoxia inducible factor-1. Biol Chem. 1997;378:609–16.

    Google Scholar 

  8. Ebert BL, Firth JF, Ratcliffe PJ. Hypoxia and mitochondria inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem. 1995;270:29083–9.

    Article  CAS  PubMed  Google Scholar 

  9. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia inducible factor-1. J Biol Chem. 1994;269:23757–63.

    CAS  PubMed  Google Scholar 

  10. Khurana NK, Wales RG. Effects of oxygen concentration on the metabolism of [U–14C]glucose by mouse morulae and early blastocysts in vitro. Reprod Fertil Dev. 1989;1:99–106.

    Article  CAS  PubMed  Google Scholar 

  11. Hooper K, Lane M, Gardner D. Reduced oxygen concentration increases mouse embryo development and oxidative metabolism. Theriogenology. 2001;55:334–40.

    Google Scholar 

  12. Sandt JJ, Schroeder AC, Eppig JJ. Culture media for mouse oocyte maturation affect subsequent embryonic development. Mol Reprod Dev. 1990;25:164–71.

    Article  PubMed  Google Scholar 

  13. Pinyopummintr T, Bavister BD. Optimum gas atmosphere for in vitro maturation and in vitro fertilization of bovine oocytes. Theriogenology. 1995;44:471–7.

    Article  CAS  PubMed  Google Scholar 

  14. Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86:1252–65.

    Article  CAS  PubMed  Google Scholar 

  15. Suresh KP, Nandi S, Mondal S. Factors affecting laboratory production of buffalo embryos: a meta-analysis. Theriogenology. 2009;72:978–85.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar P, Verma A, Roy B, Rajput S, Ojha S, Anand S, et al. Effect of varying glucose concentrations during in vitro maturation and embryo culture on efficiency of in vitro embryo production in buffalo. Reprod Domest Anim. 2011;47:269–73.

    Article  PubMed  Google Scholar 

  17. Verma A, Kumar P, Rajput S, Roy B, De S, Datta TK. Embryonic genome activation events in buffalo (Bubalus bubalis) preimplantation embryos. Mol Reprod Dev. 2012;79:321–8.

    Article  CAS  PubMed  Google Scholar 

  18. Datta TK, Goswami SL. Time dynamics and chronology of meiotic progression of buffalo (Bubalus bubalis) oocytes during in vitro maturation. Buffalo J. 1999;1:53–60.

    Google Scholar 

  19. Kumar P, Yadav P, Verma A, Singh D, De S, Datta TK. Identification of stable reference genes for gene expression studies using quantitative real time PCR in buffalo oocytes and embryos. Reprod Domest Anim. 2012;47:e88–91.

    Article  CAS  PubMed  Google Scholar 

  20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  21. Swain JE, Bormann CL, Clark SG, Walters EM, Wheeler MB, Krisher RL. Use of energy substrates by various stages preimplantation pig embryos produced in vivo and in vitro. Reproduction. 2002;123:253–60.

    Article  CAS  PubMed  Google Scholar 

  22. Preis KA, Seidel GE, Gardner DK. Reduced oxygen concentration improves the developmental competence of mouse oocytes following in vitro maturation. Mol Reprod Dev. 2007;74:893–903.

    Article  CAS  PubMed  Google Scholar 

  23. Thompson JG. Comparison between in vivo-derived and in-vitro-produced pre-elongation embryos from domestic ruminants. Reprod Fertil Dev. 1997;9:341–54.

    Article  CAS  PubMed  Google Scholar 

  24. Khurana NK, Niemann H. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol Reprod. 2000;62:847–56.

    Article  CAS  PubMed  Google Scholar 

  25. Kim J, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66:8927–30.

    Article  CAS  PubMed  Google Scholar 

  26. Farrell PB, Foote RH. Beneficial effects of culturing rabbit zygotes to blastocyst in 5 % oxygen and 10 % carbon dioxide. J Reprod Fertil. 1995;103:127–30.

    Article  CAS  PubMed  Google Scholar 

  27. Ciray HN, Aksoy T, Yaramanci K, Karayaka I, Bahceci M. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized survey on sibling oocytes. Fertil Steril. 2009;91:1459–61.

    Article  PubMed  Google Scholar 

  28. Iwata H, Akamatsu S, Minami N, Yamada M. Effects of antioxidants on the development of bovine IVM/IVF embryos in various concentrations of glucose. Theriogenology. 1998;50:365–75.

    Article  CAS  PubMed  Google Scholar 

  29. Marques MG, de Barros FR, Goissis MD, Cavalcanti PV, Viana CH, Assumpcao ME, et al. Effect of low oxygen tension atmosphere and maturation media supplementation on nuclear maturation, cortical granules migration and sperm penetration in swine in vitro fertilization. Reprod Domest Anim. 2012;47:491–507.

    Article  CAS  PubMed  Google Scholar 

  30. Voelkel SA, Hu YX. Effect of gas atmosphere on the development of one-cell bovine embryos in two culture systems. Theriogenology. 1992;37:1117–31.

    Article  CAS  PubMed  Google Scholar 

  31. Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118:47–55.

    Article  CAS  PubMed  Google Scholar 

  32. Machaty Z, Thompson JG, Abeydeera LR, Day BN, Prather RS. Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro produced porcine embryos. Mol Reprod Dev. 2001;58:39–44.

    Article  CAS  PubMed  Google Scholar 

  33. Hashimoto S, Minami N, Yamada M, Imai H. An excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: relevance to intracellular reactive oxygen species and glutathione contents. Mol Reprod Dev. 2000;56:520–6.

    Article  CAS  PubMed  Google Scholar 

  34. Leese HJ, Baumann CG, Brison D, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sturmey RG, Hawkhead J, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod. 2009;24:81–91.

    Article  CAS  PubMed  Google Scholar 

  36. Kroener L, Ambartsumyan G, Jones CB, Dumesic D, Surrey M, Munne S, et al. The effect of timing of embryonic progression on chromosomal abnormality. Fertil Steril. 2012;98:876–80.

    Article  PubMed  Google Scholar 

  37. Scott Jr RT, Upham K, Forman E, Hong K, Scott K, Taylor D, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilitzation implantation and delivery rates; a randomized controlled trial. Fertil Steril. 2013;100:697–703.

    Article  PubMed  Google Scholar 

  38. Brad AM, Bormann CL, Swain JE, Durkin RE, Johnson AE, Clifford AL, et al. Glutathione and adenosine triphosphate content of in vivo and in vitro matured porcine oocytes. Mol Reprod Dev. 2003;64:492–8.

    Article  CAS  PubMed  Google Scholar 

  39. Herrick JR, Brad AM, Krisher RL, Pope WF. Intracellular adenosine triphosphate and glutathione concentrations in oocytes from first estrous, multi-estrous, and testosterone-treated gilts. Anim Reprod Sci. 2003;78:123–31.

    Article  CAS  PubMed  Google Scholar 

  40. Khurana NK, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/ blastocyst formation of bovine embryos. Theriogenology. 2000;54:741–56.

    Article  CAS  PubMed  Google Scholar 

  41. Kind KL, Collett RA, Harvey AJ, Thompson JG. Oxygen-regulated expression of GLUT-1, GLUT-3, and VEGF in the mouse blastocyst. Mol Reprod Dev. 2005;70:37–44.

    Article  CAS  PubMed  Google Scholar 

  42. Bermejo-Álvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod BioMed Online. 2010;20:341–9.

    Article  PubMed  Google Scholar 

  43. Harvey AJ, Kind KL, Pantaleon M, Armstrong DT, Thompson JG. Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod. 2004;71:1108–19.

    Article  CAS  PubMed  Google Scholar 

  44. Morita Y, Osamu T, Iwao H. Expression and possible function of glucose transporter protein GLUT-1 during preimplantation mouse development from oocytes to blastocysts. Biochem Biophys Res Commun. 1992;188:8–15.

    Article  CAS  PubMed  Google Scholar 

  45. Hogan A, Heyner S, Charron MJ, Copeland NG, Gilbert DJ, Jekins NA, et al. Glucose transporter gene expression in early mouse embryos. Development. 1991;113:363–72.

    CAS  PubMed  Google Scholar 

  46. Pantaleon M, Harvey MB, Pascoe WS. Glucose transporter GLUT3: ontogeny, targeting, and role in mouse blastocyst. Proc Natl Acad Sci U S A. 1997;94:3795–800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Carayannopoulos MO, Chi MM, Cui Y. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000;97:7313–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Critical inputs of Dr.R.K. Sharma, PS, Biochemistry Div, NDRI for interpreting the data, of Mr. Gian Singh, Technical Officer, NDRI computer section for statistical analysis and fund received from NAIP C-1056 and NAE projects of ICAR to the corresponding author are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirtha Kumar Datta.

Additional information

Capsule

The expression pattern of glucose metabolism genes was found to be correlated with improved development of buffalo oocytes / embryos under low oxygen condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Verma, A., Kumar, M. et al. Expression pattern of glucose metabolism genes correlate with development rate of buffalo oocytes and embryos in vitro under low oxygen condition. J Assist Reprod Genet 32, 471–478 (2015). https://doi.org/10.1007/s10815-014-0418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0418-6

Keywords

Navigation