Journal of Assisted Reproduction and Genetics

, Volume 32, Issue 3, pp 451–460 | Cite as

microRNA profiling in three main stages during porcine spermatogenesis

  • Zonggang Luo
  • Yingkai Liu
  • Lei Chen
  • Michael Ellis
  • Mingzhou Li
  • Jinyong Wang
  • Yi Zhang
  • Penghui Fu
  • Ketian Wang
  • Xuewei Li
  • Ling Wang
Gamete Biology



Spermatogenesis is an intricate biological event wherein an undifferentiated spermatogonium develops into mature sperms. MicroRNAs are a type of single strand small non-coding RNA molecule and are implicated in the regulation of many crucial pathways during cell proliferation, apoptosis, and differentiation.


Here, we present a comprehensive comparison of miRNA expression profiling in three main stages during porcine spermatogenesis using high-throughput sequencing.


We built three small RNA libraries for the testis, the epididymis and the ejaculated sperm from a Landrace boar, and in total obtained 3821 precursor hairpins encoding for 4761 mature miRNAs, of which 23 are miRNA*. Notably, 940 precursor miRNAs produced both the 5’- and 3’- strands as sister pairs, indicating the distinctive expression patterns of germ cell miRNAs. Additionally, 418 out of 710 co-expressed miRNAs were identified as being differentially expressed between libraries (P < 0.001). Apart from the sexual specific X chromosome, many miRNAs were found to be located on chromosome 12, which may play potential roles in spermatogenesis according to the result of synteny analysis with human and mouse. The Gene Ontology and KEGG pathway analysis revealed that the target genes of co-expressed miRNAs were highly involved in the cell cycle process, metal ion binding, modification of plasma membrane, and the p53 signal pathway.


microRNAs Spermatogenesis Deep sequencing Testis Epididymis Sperm 



This work was supported by grants from the National Basic Research Foundation for Colleges and Universities of China (XDJK2012C096), the Specialized Doctor Research Fund of Southwestern University of China (2013Bsr8) to Z.L, and the National Natural Science Foundation of China (31101701) to L.C.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10815_2014_406_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2407 kb)


  1. 1.
    Wykes SM, Visscher DW, Krawetz SA. Haploid transcripts persist in mature human spermatozoa. Mol Hum Reprod. 1997;3(1):15–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Dacheux J-L, Castella S, Gatti JL, Dacheux F. Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology. 2005;63(2):319–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Marengo SR. Maturing the sperm: unique mechanisms for modifying integral proteins in the sperm plasma membrane. Anim Reprod Sci. 2008;105(1):52–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Kierszenbaum A, Tres LL. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975;65(2):258–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Miller D, Ostermeier GC, Krawetz SA. The controversy, potential and roles of spermatozoal RNA. Trends Mol Med. 2005;11(4):156–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Miller D, Ostermeier GC. Towards a better understanding of RNA carriage by ejaculate spermatozoa. Hum Reprod Update. 2006;12(6):757–67.PubMedCrossRefGoogle Scholar
  7. 7.
    Gilbert I, Bissonnette N, Boissonneault G, Vallée M, Robert C. A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction. 2007;133(6):1073–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429(6988):154.PubMedCrossRefGoogle Scholar
  9. 9.
    Gur Y, Breitbart H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 2006;20(4):411–6.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kempisty B, Antosik P, Bukowska D, Jackowska M, Lianeri M, Jaśkowski JM, et al. Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos. Reprod Fertil Dev. 2008;20(4):513–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Yao C-J, Xu W-J, Gong X-L, Zhou Y, Yan Z-Q, Zhu Z-J, et al. The role of Dby mRNA in early development of male mouse zygotes. Asian J Androl. 2010;12(4):567–77.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303(5666):2022–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Plasterk RH. Micro RNAs in animal development. Cell. 2006;124(5):877–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Schickel R, Boyerinas B, Park S, Peter M. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27(45):5959–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ: Cardiovasc Genet. 2010;3(6):499–506.Google Scholar
  17. 17.
    Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 2012;22(11):1609–12.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kawano M, Kawaji H, Grandjean V, Kiani J, Rassoulzadegan M. Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS ONE. 2012;7(9):e44542.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD. Dicer1 is required for differentiation of the mouse male germline. Biol Reprod. 2008;79(4):696–703. doi: 10.1095/biolreprod.108.067827.PubMedCrossRefGoogle Scholar
  20. 20.
    Novotny GW, Sonne SB, Nielsen JE, Jonstrup SP, Hansen MA, Skakkebaek N, et al. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ. 2007;14:879–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73(3):427–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Bartel DP, Chen C-Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5(5):396–400.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu W-M, Pang RT, Chiu PC, Wong BP, Lao K, Lee K-F, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci. 2012;109(2):490–4.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360(9335):772–7. doi: 10.1016/S0140-6736(02)09899-9.PubMedCrossRefGoogle Scholar
  25. 25.
    Li M, Xia Y, Gu Y, Zhang K, Lang Q, Chen L, et al. MicroRNAome of porcine pre-and postnatal development. PLoS ONE. 2010;5(7):e11541.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Li M, Liu Y, Wang T, Guan J, Luo Z, Chen H, et al. Repertoire of porcine microRNAs in adult ovary and testis by deep sequencing. Int J Biol Sci. 2011;7(7):1045.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS ONE. 2012;7(8):e43691.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Liu Y, Li M, Ma J, Zhang J, Zhou C, Wang T, et al. Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Mol Biol. 2013;14(1):7.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208.PubMedCrossRefGoogle Scholar
  33. 33.
    Ro S, Park C, Young D, Sanders KM, Yan W. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res. 2007;35(17):5944–53.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007;311(2):592–602.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Guo X, Su B, Zhou Z, Sha J. Rapid evolution of mammalian X-linked testis microRNAs. BMC Genomics. 2009;10(1):97.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, et al. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS ONE. 2010;5(8):e11744.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, et al. Birth and expression evolution of mammalian microRNA genes. Genome Res. 2013;23(1):34–45.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, et al. Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS ONE. 2013;8(2):e56535.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, et al. The Ensembl genome database project. Nucleic Acids Res. 2002;30(1):38–41.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Waye J, Willard H. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol Cell Biol. 1986;6(9):3156–65.PubMedCentralPubMedGoogle Scholar
  41. 41.
    George DL, Phillips III JA, Francke U, Seeburg PH. The genes for growth hormone and chorionic somatomammotropin are on the long arm of human chromosome 17 in region q21 → qter. Hum Genet. 1981;57(2):138–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Kile BT, Hentges KE, Clark AT, Nakamura H, Salinger AP, Liu B, et al. Functional genetic analysis of mouse chromosome 11. Nature. 2003;425(6953):81–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241–7.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Curry E, Safranski TJ, Pratt SL. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology. 2011;76(8):1532–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang J, Liu Q, Zhang W, Li J, Li Z, Tang Z, et al. Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin. 2010;42(2):145–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Chieffi P, Battista S, Barchi M, Di Agostino S, Pierantoni GM, Fedele M, et al. HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene. 2002;21(22):3644–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Brewis IA, Wong CH. Gamete recognition: sperm proteins that interact with the egg zona pellucida. Rev Reprod. 1999;4(3):135–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Breitbart H. Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol. 2002;187(1):139–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Evans JP, Florman HM. The state of the union: the cell biology of fertilization. Nat Cell Biol. 2002;4.Google Scholar
  50. 50.
    Suarez S, Ho H. Hyperactivation of mammalian sperm. Cell Mol Biol (Noisy-le-Grand Fr). 2003;49(3):351–6.Google Scholar
  51. 51.
    Kaupp U, Hildebrand E, Weyand I. Sperm chemotaxis in marine invertebrates—molecules and mechanisms. J Cell Physiol. 2006;208(3):487–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Fraser LR, Adeoya-Osiguwa S, Baxendale RW, Mededovic S, Osiguwa OO. First messenger regulation of mammalian sperm function via adenylyl cyclase/cAMP. J Reprod Dev. 2005;51(1):37–46.PubMedCrossRefGoogle Scholar
  53. 53.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 2008;28(7):2167–74.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochimica et Biophysica Acta (BBA)-Reviews on. Biomembranes. 2000;1469(3):197–235.Google Scholar
  56. 56.
    Parkes AS. Marshall’s physiology of reproduction. Marshall’s physiology of reproduction. 1966;3(3rd. Edn).Google Scholar
  57. 57.
    Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307.PubMedCrossRefGoogle Scholar
  58. 58.
    Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE. 2009;4(8):e6816.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    París R, Henry RE, Stephens SJ, McBryde M, Espinosa JM. Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle. 2008;7(15):2427–33.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res. 2008;68(9):3193–203.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci. 2008;105(36):13421–6.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Ott CE, Grünhagen J, Jäger M, Horbelt D, Schwill S, Kallenbach K, et al. MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 3’ UTR and coding-sequence binding sites. PLoS ONE. 2011;6(1):e16250.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Ma W, Xie S, Ni M, Huang X, Hu S, Liu Q, et al. MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem. 2012;287(13):10189–99.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Ma W, Hu S, Yao G, Xie S, Ni M, Liu Q, et al. An androgen receptor-microRNA-29a regulatory circuitry in mouse epididymis. J Biol Chem. 2013;288(41):29369–81.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132(21):4653–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Romualdi C, Bortoluzzi S, d’Alessi F, Danieli GA. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics. 2003;12(2):159–62.PubMedCrossRefGoogle Scholar
  68. 68.
    He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007;27(6):2240–52.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res. 2008;6(5):735–42. doi: 10.1158/1541-7786.MCR-07-2102.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, et al. Differential Regulation of microRNAs by p53 revealed by massively parallel sequencing. Cell Cycle. 2007;6(13):1586–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 2004;14(12):2486–94.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard M-H, Durand P, et al. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA. 2010;16(4):720–31.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Damestoy A, Perrard M-H, Vigier M, Sabido O, Durand P. Transforming growth factor beta-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro. Reprod Biol Endocrinol. 2005;3:22.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Massagué J, Gomis RR. The logic of TGFβ signaling. FEBS Lett. 2006;580(12):2811–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Itman C, Loveland KL. SMAD expression in the testis: an insight into BMP regulation of spermatogenesis. Dev Dyn. 2008;237(1):97–111.PubMedCrossRefGoogle Scholar
  77. 77.
    Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16(5):633–47.PubMedCrossRefGoogle Scholar
  79. 79.
    Nagai T, Niwa K, Iritani A. Effect of sperm concentration during preincubation in a defined medium on fertilization in vitro of pig follicular oocytes. J Reprod Fertil. 1984;70(1):271–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Mogoe T, Fukui Y, Ishikawa H, Ohsumi S. Effects of diluent composition and temperature on motility and viability after liquid storage and cryopreservation of minke whale (Balaenoptera acutorostrata) spermatozoa. Mar Mammal Sci. 1998;14(4):854–60.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zonggang Luo
    • 1
    • 2
    • 3
  • Yingkai Liu
    • 4
    • 5
  • Lei Chen
    • 2
    • 3
  • Michael Ellis
    • 5
  • Mingzhou Li
    • 4
  • Jinyong Wang
    • 2
    • 3
  • Yi Zhang
    • 6
  • Penghui Fu
    • 1
  • Ketian Wang
    • 3
  • Xuewei Li
    • 4
  • Ling Wang
    • 1
  1. 1.Department of Animal ScienceSouthwest University, RongchangChongqingChina
  2. 2.Key Laboratory of Pig Industry Sciences, Ministry of AgricultureRongchangChina
  3. 3.Chongqing Academy of Animal ScienceRongchangChina
  4. 4.Institute of Animal Genetics & Breeding, College of Animal Science & TechnologySichuan Agricultural UniversityYa’anChina
  5. 5.Department of Animal SciencesUniversity of IllinoisUrbanaUSA
  6. 6.School of animal scienceXichang CollegeXichangChina

Personalised recommendations