Skip to main content
Log in

Urine cortisol concentration as a biomarker of stress is unrelated to IVF outcomes in women and men

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Our primary objective was to assess associations between urine cortisol as a biomarker of psychological stress and in vitro fertilization (IVF) outcomes. A secondary objective was to assess associations between toxic metals and cortisol.

Methods

Urine and blood specimens were collected from 52 women and 28 male partners completing a first IVF procedure, on the day of oocyte retrieval. Urine cortisol was measured with an enzyme-linked immunosorbent assay. Mercury (Hg), cadmium (Cd), and lead (Pb) were determined in blood and Cd in urine by inductively coupled plasma-mass spectrometry.

Results

No associations were indicated for cortisol with IVF outcomes in multivariable regression models adjusted for covariates. However, we detected positive linear associations for cortisol and urine Cd (β = 9.96, 95%CI 1.52, 21.44) and blood Hg (β = 1.44, 95%CI 0.31, 3.18). An exploratory stratified analysis suggested a potential inverse association between urine cortisol and oocyte fertilization among women with low, but not high blood Hg.

Conclusion

While limited, these preliminary data suggest that psychological stress may not play a major role in IVF outcomes, which therefore could be one less concern for couples and their clinicians. Our data also raise the possibility for toxic metals to modify associations between cortisol and IVF outcomes among women. However, these preliminary results require corroboration in an experimental animal model and confirmation in a larger, more definitive observational study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Buck Louis GM, Lum KJ, Sundaram R, Chen Z, Kim S, Lynch CD, et al. Stress reduces conception probabilities across the fertile window: Evidence in support of relaxation. Fertil Steril. 2011;95(7):2184–9.

    Article  PubMed Central  Google Scholar 

  2. Lynch CD, Sundaram R, Maisog JM, Sweeney AM, Buck Louis GM. Preconception stress increases the risk of infertility: Results from a couple-based prospective cohort study—the LIFE study. Hum Reprod. 2014;29(5):1067–75.

    Article  CAS  PubMed  Google Scholar 

  3. Chatterjee A, Chatterjee R. How stress affects female reproduction: An overview. Biomed Res-India. 2009;20(2):79–83.

    CAS  Google Scholar 

  4. Ardenti R, Campari C, Agazzi L, Battista La Sala G. Anxiety and perceptive functioning of infertile women during in-vitro fertilization: Exploratory survey of an Italian sample. Hum Reprod. 1999;14(12):3126–32.

    Article  CAS  PubMed  Google Scholar 

  5. Merari D, Feldberg D, Elizur A, Goldman J, Modan B. Psychological and hormonal changes in the course of in vitro fertilization. J Assist Reprod Genet. 1992;9(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  6. Sutton P, Giudice LC, Woodruff TJ. Reproductive environmental health. Curr Opin Obstet Gynecol. 2010;22(6):517–24.

    Article  PubMed  Google Scholar 

  7. Bloom MS, Fujimoto VY, Steuerwald AJ, Cheng G, Browne RW, Parsons PJ. Background exposure to toxic metals in women adversely influences pregnancy during in vitro fertilization (IVF). Reprod Toxicol. 2012;34(3):471–81.

    Article  CAS  PubMed  Google Scholar 

  8. Bloom MS, Parsons PJ, Kim D, Steuerwald A, Vaccari S, Cheng G, et al. Toxic trace metals and embryo quality indicators during in vitro fertilization (IVF). Reprod Toxicol. 2011;31(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  9. Bloom MS, Parsons PJ, Steuerwald AJ, Schisterman EF, Browne RW, Kim K, et al. Toxic trace metals and human oocytes during in vitro fertilization (IVF). Reprod Toxicol. 2010;29(3):298–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gump BB, MacKenzie JA, Dumas AK, Palmer CD, Parsons PJ, Segu ZM, et al. Fish consumption, low-level mercury, lipids, and inflammatory markers in children. Environ Res. 2012;112:204–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sandhu N, Vijayan MM. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout. Aquat Toxicol. 2011;103(1–2):92–100.

    Article  CAS  PubMed  Google Scholar 

  12. Sures B, Scheef G, Klar B, Kloas W, Taraschewski H. Interaction between cadmium exposure and infection with the intestinal parasite Moniliformis moniliformis (Acanthocephala) on the stress hormone levels in rats. Environ Pollut. 2002;119(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  13. Lovely LP, Meyer WR, Ekstrom RD, Golden RN. Effect of stress on pregnancy outcome among women undergoing assisted reproduction procedures. South Med J. 2003;96(6):548–51.

    Article  PubMed  Google Scholar 

  14. Smeenk JMJ, Verhaak CM, Vingerhoets A, Sweep CGJ, Merkus J, Willemsen SJ, et al. Stress and outcome success in IVF: The role of self-reports and endocrine variables. Hum Reprod. 2005;20(4):991–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kim K, Steuerwald AJ, Parsons PJ, Fujimoto VY, Browne RW, Bloom MS. Biomonitoring for exposure to multiple trace elements via analysis of urine from participants in the Study of Metals and Assisted Reproductive Technologies (SMART). J Environ Monit. 2011;13(9):2413–9.

    Article  CAS  PubMed  Google Scholar 

  16. Karlamangla AS, Friedman EM, Seeman TE, Stawksi RS, Almeida DM. Daytime trajectories of cortisol: Demographic and socioeconomic differences-Findings from the National Study of Daily Experiences. Psychoneuroendocrinology. 2013;38(11):2585–97.

    Article  CAS  PubMed  Google Scholar 

  17. Direk N, Newson RS, Hofman A, Kirschbaum C, Tiemeier H. Short and long-term effects of smoking on cortisol in older adults. Int J Psychophysiol. 2011;80(2):157–60.

    Article  PubMed  Google Scholar 

  18. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–6.

    Article  PubMed  Google Scholar 

  19. Altman DG, Matthews JNS. Statistics Notes: Interaction 1: Heterogeneity of effects. vol 7055. 1996.

  20. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Stat Method). 1995;57(1):289–300.

    Google Scholar 

  21. Kleinbaum DG, Kupper LL, Muller KE, Nizam A. Regression diagnostics. In: Kleinbaum DG, Kupper LL, Muller KE, Nizham A, editors. Applied Regression Analysis and Other Multivariable Methods. Pacific Grove, CA: Duxbury Press; 1998. p. 212–80.

    Google Scholar 

  22. Vicennati V, Pasqui F, Cavazza C, Garelli S, Casadio E, di Dalmazi G et al. Cortisol, energy intake, and food frequency in overweight/obese women. Nutrition (Burbank, Los Angeles County, Calif). 2011;27(6):677–80.

  23. Klonoff-Cohen H, Chu E, Natarajan L, Sieber W. A prospective study of stress among women undergoing in vitro fertilization or gamete intrafallopian transfer. Fertil Steril. 2001;76(4):675–87.

    Article  CAS  PubMed  Google Scholar 

  24. An Y, Sun Z, Li L, Zhang Y, Ji H. Relationship between psychological stress and reproductive outcome in women undergoing in vitro fertilization treatment: Psychological and neurohormonal assessment. J Assist Reprod Genet. 2013;30(1):35–41.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Milad MP, Klock SC, Moses S, Chatterton R. Stress and anxiety do not result in pregnancy wastage. Hum Reprod. 1998;13(8):2296–300.

    Article  CAS  PubMed  Google Scholar 

  26. Harlow CR, Fahy UM, Talbot WM, Wardle PG, Hull MGR. Stress and stress-related hormones during in-vitro fertilization treatment. Hum Reprod. 1996;11(2):274–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nepomnaschy PA, Welch KB, McConnell DS, Low BS, Strassmann BI, England BG. Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci U S A. 2006;103(10):3938–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wathes DC, Abayasekara DRE, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol Reprod. 2007;77(2):190–201.

    Article  CAS  PubMed  Google Scholar 

  29. Kim DG, Bloom MS, Parsons PJ, Fitzgerald EF, Bell EM, Steuerwald AJ, et al. A pilot study of seafood consumption and exposure to mercury, lead, cadmium and arsenic among infertile couples undergoing in vitro fertilization (IVF). Environ Toxicol Pharmacol. 2013;36(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  30. Din JN, Newby DE, Flapan AD. Science, medicine, and the future - Omega 3 fatty acids and cardiovascular disease - fishing for a natural treatment. Br Med J. 2004;328(7430):30–5.

    Article  CAS  Google Scholar 

  31. Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009;44:50–8.

    Article  PubMed  Google Scholar 

  32. Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: The role of fatty acids and beta-oxidation. Reproduction. 2014;148(1):R15–27.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JY, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction. 2001;122(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  34. Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Hum Reprod. 2012;27(SUPPL .1):i2-i21.

  35. Xia P. Intracytoplasmic sperm injection: Correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod. 1997;12(8):1750–5.

    Article  CAS  PubMed  Google Scholar 

  36. Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ. Fatty acid composition of fertilization-failed human oocytes. Hum Reprod. 1998;13(8):2227–30.

    Article  CAS  PubMed  Google Scholar 

  37. Zeron Y, Sklan D, Arav A. Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol Reprod Dev. 2002;61(2):271–8.

    Article  CAS  PubMed  Google Scholar 

  38. Wakefield SL, Lane M, Schulz SJ, Hebart ML, Thompson JG, Mitchell M. Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am J Physiol Endocrinol Metab. 2008;294(2):E425–34.

    Article  CAS  PubMed  Google Scholar 

  39. Hammiche F, Vujkovic M, Wijburg W, de Vries JHM, Macklon NS, Laven JSE, et al. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil Steril. 2011;95(5):1820–3.

    Article  CAS  PubMed  Google Scholar 

  40. Vujkovic M, de Vries JH, Lindemans J, Macklon NS, van der Spek PJ, Steegers EAP, et al. The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil Steril. 2010;94(6):2096–101.

    Article  PubMed  Google Scholar 

  41. Jungheim ES, Frolova AI, Jiang H, Riley JK. Relationship between serum polyunsaturated fatty acids and pregnancy in women undergoing in vitro fertilization. J Clin Endocrinol Metab. 2013;98(8):E1364–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab. 1971;33(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  43. Contreras LN, Hane S, Tyrrell JB. Urinary cortisol in the assessment of pituitary-adrenal function: utility of 24-hour and spot determinations. J Clin Endocrinol Metab. 1986;62(5):965–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yehuda R, Halligan SL, Yang RK, Guo LS, Makotkine I, Singh B, et al. Relationship between 24-hour urinary-free cortisol excretion and salivary cortisol levels sampled from awakening to bedtime in healthy subjects. Life Sci. 2003;73(3):349–58.

    Article  CAS  PubMed  Google Scholar 

  45. Cook NJ. Review: Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Can J Anim Sci. 2012;92(3):227–59.

    Article  CAS  Google Scholar 

  46. Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A. Measuring cortisol in human psychobiological studies. Physiol Behav. 2007;90(1):43–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Gloria Cheng from the UCSF for assistance in preparing and shipping biologic specimens and Dr. Richard W. Browne at the University at Buffalo, SUNY for conducting the urine creatinine analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Bloom.

Additional information

Capsule Psychological stress does not appear to impact in vitro fertilization outcomes, but there is a possibility for modification by exposure to toxic metals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butts, C.D., Bloom, M.S., Frye, C.A. et al. Urine cortisol concentration as a biomarker of stress is unrelated to IVF outcomes in women and men. J Assist Reprod Genet 31, 1647–1653 (2014). https://doi.org/10.1007/s10815-014-0359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0359-0

Keywords

Navigation