Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 11, pp 1475–1481 | Cite as

Trophectoderm morphology predicts outcomes of pregnancy in vitrified-warmed single-blastocyst transfer cycle in a Chinese population

  • Xiaojiao Chen
  • Junqiang Zhang
  • Xun Wu
  • Shanren Cao
  • Lin Zhou
  • Ying Wang
  • Xin Chen
  • Jin Lu
  • Chun Zhao
  • Minjian Chen
  • Xiufeng Ling
Assisted Reproduction Technologies



In this study, we estimated the effect of blastocoele expansion, ICM and TE quality after warming and culture on the rates of clinical pregnancy, live birth and miscarriage in vitrified-warmed single-blastocyst transfer cycle in a Chinese population.


A retrospective analysis of 263 cycles of vitrified-warmed single-blastocyst transfers was performed.


The blastocysts with higher TE grade significantly increased the rates of clinical pregnancy (OR = 0.59, 95 % CI, 0.35–0.99, P = 0.045, grade (A + B) vs grade C) and live birth (OR = 0.55, 95 % CI, 0.32–0.94, P = 0.029, grade (A + B) vs grade C). And the association between TE grade and the rate of live birth didn’t change after the number of repeated cycles was adjusted (OR = 0.55, 95 % CI, 0.32–0.95, P = 0.033, grade (A + B) vs grade C). The number of repeated cycles was a confounding factor significantly different between the live birth and no live birth groups. By contrast, neither blastocoele expansion nor inner cell mass was statistically related to the rates of clinical pregnancy, live birth and miscarriage.


Our data firstly provided the evidence that TE grading, but not ICM grading, was significantly associated with the clinical pregnancy rate and live birth rate in vitrified-warmed blastocyst transfer cycles in a Chinese population. TE morphology may help predict outcomes of pregnancy in single-blastocyst transfer.


Blastocyst grading Trophectoderm Vitrified-warmed single-blastocyst transfer Clinical pregnancy Live birth 



This study was financially supported by the National Natural Science Foundation of China (grant nos. 81100420 and 81270701), the Foundation of Nanjing Medical University (grant no. 2011NJMU210), the Natural Science Foundation of Jiangsu Province (grant no. BK2012520) and Nanjing Medical Science and Technique Development Foundation (2010NJMU030).

Declaration of interest

The authors declare no conflict of interest.


  1. 1.
    Cruz JR, Dubey AK, Patel J, Peak D, Hartog B, Gindoff PR. Is blastocyst transfer useful as an alternative treatment for patients with multiple in vitro fertilization failures? Fertil Steril. 1999;72:218–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Papanikolaou EG, Kolibianakis EM, Tournaye H, Venetis CA, Fatemi H, Tarlatzis B, et al. Live birth rates after transfer of equal number of blastocysts or cleavage-stage embryos in IVF. A Syst Rev Meta-Analysis Hum Reprod. 2008;23:91–9.Google Scholar
  3. 3.
    Zech NH, Lejeune B, Puissant F, Vanderzwalmen S, Zech H, Vanderzwalmen P. Prospective evaluation of the optimal time for selecting a single embryo for transfer: day 3 versus day 5. Fertil Steril. 2007;88:244–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhu D, Zhang J, Cao S, Heng BC, Huang M, Ling X, et al. Vitrified-warmed blastocyst transfer cycles yield higher pregnancy and implantation rates compared with fresh blastocyst transfer cycles–time for a new embryo transfer strategy? Fertil Steril. 2011;95:1691–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhu L, Xi Q, Zhang H, Li Y, Ai J, Jin L. Blastocyst culture and cryopreservation to optimize clinical outcomes of warming cycles. Reprod Biomed Online. 2013;27:154–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Endo T, Honnma H, Hayashi T, Chida M, Yamazaki K, Kitajima Y, et al. Continuation of GnRH agonist administration for 1 week, after hCG injection, prevents ovarian hyperstimulation syndrome following elective cryopreservation of all pronucleate embryos. Hum Reprod. 2002;17:2548–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Veeck LL, Bodine R, Clarke RN, Berrios R, Libraro J, Moschini RM, et al. High pregnancy rates can be achieved after freezing and thawing human blastocysts. Fertil Steril. 2004;82:1418–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Gardner DK, Vella P, Lane M, Wagley L, Schlenker T, Schoolcraft WB. Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers. Fertil Steril. 1998;69:84–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Csokmay JM, Hill MJ, Chason RJ, Hennessy S, James AN, Cohen J, et al. Experience with a patient-friendly, mandatory, single-blastocyst transfer policy: the power of one. Fertil Steril. 2011;96:580–4.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kresowik JD, Stegmann BJ, Sparks AE, Ryan GL, van Voorhis BJ. Five-years of a mandatory single-embryo transfer (mSET) policy dramatically reduces twinning rate without lowering pregnancy rates. Fertil Steril. 2011;96:1367–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Mortimer JR, editor. Toward Reproductive Certainty: Infertility and Genetics Beyond 1999. Carnforth, UK: Parthenon Press; 1999. p. 378–88.Google Scholar
  12. 12.
    Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81:551–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Balaban B, Yakin K, Urman B. Randomized comparison of two different blastocyst grading systems. Fertil Steril. 2006;85:559–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Hill MJ, Richter KS, Heitmann RJ, Graham JR, Tucker MJ, DeCherney AH, et al. Trophectoderm grade predicts outcomes of single-blastocyst transfers. Fertil Steril. 2013;99:1283–9 e1.PubMedCrossRefGoogle Scholar
  16. 16.
    Ahlstrom A, Westin C, Reismer E, Wikland M, Hardarson T. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26:3289–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Richter KS, Harris DC, Daneshmand ST, Shapiro BS. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril. 2001;76:1157–67.PubMedCrossRefGoogle Scholar
  18. 18.
    Goto S, Kadowaki T, Tanaka S, Hashimoto H, Kokeguchi S, Shiotani M. Prediction of pregnancy rate by blastocyst morphological score and age, based on 1,488 single frozen-thawed blastocyst transfer cycles. Fertil Steril. 2011;95:948–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Van den Abbeel E, Balaban B, Ziebe S, Lundin K, Cuesta MJ, Klein BM, et al. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod Biomed Online. 2013;27:353–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang JQ, Li XL, Peng Y, Guo X, Heng BC, Tong GQ. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online. 2010;20:510–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67:73–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Mukaida T, Takahashi K, Kasai M. Blastocyst cryopreservation: ultrarapid vitrification using cryoloop technique. Reprod Biomed Online. 2003;6:221–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Sathanandan M, Macnamee MC, Rainsbury P, Wick K, Brinsden P, Edwards RG. Replacement of frozen-thawed embryos in artificial and natural cycles: a prospective semi-randomized study. Hum Reprod. 1991;6:685–7.PubMedGoogle Scholar
  24. 24.
    Schmidt CL, de Ziegler D, Gagliardi CL, Mellon RW, Taney FH, Kuhar MJ, et al. Transfer of cryopreserved-thawed embryos: the natural cycle versus controlled preparation of the endometrium with gonadotropin-releasing hormone agonist and exogenous estradiol and progesterone (GEEP). Fertil Steril. 1989;52:609–16.PubMedGoogle Scholar
  25. 25.
    Thompson SM, Onwubalili N, Brown K, Jindal SK, McGovern PG. Blastocyst expansion score and trophectoderm morphology strongly predict successful clinical pregnancy and live birth following elective single embryo blastocyst transfer (eSET): a national study. J Assist Reprod Genet. 2013;30:1577–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Honnma H, Baba T, Sasaki M, Hashiba Y, Ohno H, Fukunaga T, et al. Trophectoderm morphology significantly affects the rates of ongoing pregnancy and miscarriage in frozen-thawed single-blastocyst transfer cycle in vitro fertilization. Fertil Steril. 2012;98:361–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Licht P, Russu V, Lehmeyer S, Wildt L. Molecular aspects of direct LH/hCG effects on human endometrium–lessons from intrauterine microdialysis in the human female in vivo. Reprod Biol. 2001;1:10–9.PubMedGoogle Scholar
  28. 28.
    Licht P, Russu V, Wildt L. On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Semin Reprod Med. 2001;19:37–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Lopata A. Implantation of the human embryo. Hum Reprod. 1996;11 Suppl 1:175–84. discussion 93–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsampalas M, Gridelet V, Berndt S, Foidart JM, Geenen V, Perrier D’Hauterive S. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J Reprod Immunol. 2010;85:93–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Parks JC, McCallie BR, Janesch AM, Schoolcraft WB, Katz-Jaffe MG. Blastocyst gene expression correlates with implantation potential. Fertil Steril. 2011;95:1367–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Alfarawati S, Fragouli E, Colls P, Stevens J, Gutierrez-Mateo C, Schoolcraft WB, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Ahlstrom A, Westin C, Wikland M, Hardarson T. Prediction of live birth in frozen-thawed single blastocyst transfer cycles by pre-freeze and post-thaw morphology. Hum Reprod. 2013;28:1199–209.PubMedCrossRefGoogle Scholar
  35. 35.
    Shu Y, Watt J, Gebhardt J, Dasig J, Appling J, Behr B. The value of fast blastocoele re-expansion in the selection of a viable thawed blastocyst for transfer. Fertil Steril. 2009;91:401–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaojiao Chen
    • 1
  • Junqiang Zhang
    • 1
    • 2
  • Xun Wu
    • 1
  • Shanren Cao
    • 1
  • Lin Zhou
    • 1
  • Ying Wang
    • 1
  • Xin Chen
    • 1
  • Jin Lu
    • 1
  • Chun Zhao
    • 1
  • Minjian Chen
    • 3
  • Xiufeng Ling
    • 1
  1. 1.State Key Laboratory of Reproductive Medicine, Department of ReproductionNanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
  3. 3.Key Laboratory of Modern Toxicology of Ministry of Education, School of Public HealthNanjing Medical UniversityNanjingChina

Personalised recommendations