Skip to main content
Log in

Association of common SNP rs1136410 in PARP1 gene with the susceptibility to male infertility with oligospermia

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aims to explore possible associations between polymorphisms of common SNP rs1136410 and rS1805405 in PARP1 gene and male infertility with spermatogenesis impairment.

Methods

The polymorphic distributions of SNP rs1136410 and rS1805405 were investigated by polymerase chain reaction and restriction fragment length polymorphism analysis in a Chinese cohort including 371 infertile patients with idiopathic azoospermia or oligospermia and 231 controls.

Results

Significant differences in the frequencies of allele and genotype of SNP rs1136410 were observed between patients with oligospermia and controls. The allele C (46.3 % vs. 36.4 %, P = 0.003) and genotype CC (22.6 % vs. 13.4 %, P = 0.014) significantly increased, whereas genotype TT (30 % vs. 40.7 %, P = 0.021) significantly decreased in patients with oligospermia compared with controls at this SNP locus.

Conclusions

These results indicated that genotype CC of SNP rs1136410 may increase the risk of oligosoermia and genotype TT of rs1136410 may have some protective effect from oligospermia, suggesting that the polymorphism of SNP rs1136410 in PARP1 gene may modify the susceptibility to male infertility with oligospermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. De Kretse DM, Baker HW. Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab. 1999;84:3443–50.

    Google Scholar 

  2. Cram DS, O’Bryan MK, de Kretser DM. Male infertility genetics—the future. J Androl. 2001;22:738–46.

    PubMed  CAS  Google Scholar 

  3. Toshimori K, Ito C, Maekawa M, Toyama Y, Suzuki-Toyota F, Saxena DK. Impairment of spermatogenesis leading to infertility. Anat Sci Int. 2004;79:101–11.

    Article  PubMed  CAS  Google Scholar 

  4. Massart A, Lissens W, Tournaye H, Stouffs K. Genetic causes of spermatogenic failure. Asian J Androl. 2012;14:40–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14:734–45.

    Article  PubMed  CAS  Google Scholar 

  6. Seshagiri PB. Molecular insights into the causes of male infertility. J Biosci. 2001;26(4 Suppl):429–35.

    Article  PubMed  CAS  Google Scholar 

  7. Stouffs K, Tournaye H, Liebaers I, Lissens W. Male infertility and the involvement of the X chromosome. Hum Reprod Update. 2009;15:623–37.

    Article  PubMed  CAS  Google Scholar 

  8. Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK. Poly(ADPribose) polymerases: managing genome stability. Int J Biochem Cell Biol. 2005;37:920–6.

    Article  PubMed  CAS  Google Scholar 

  9. Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP1:“PAR-laying” NAD+ into a nuclear signal. Genes Dev. 2005;19:1951–67.

    Article  PubMed  CAS  Google Scholar 

  10. Bürkle A. Poly(ADP-ribose). FEBS J. 2005;272:4576–89.

    Article  PubMed  Google Scholar 

  11. Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol. 2009;7:143.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Celik-Ozenci C, Tasatargil A. Role of poly(ADP-ribose) polymerases in male reproduction. Spermatogenesis. 2013;3(2):e24194.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bai P, Cantó C. The role of PARP1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 2012;16:290–5.

    PubMed  CAS  Google Scholar 

  14. Rolli V, Ruf A, Augustin A, Schulz GE, MenissierdeMurcia J, et al. Poly(ADP-ribose)polymerase structure and function. In: Shall S, de Murcia G, editors. From DNA damage and stress signalling to cell death. Poly ADP-ribosylation reactions. New York: Oxford University Press; 2000. p. 35–57.

    Google Scholar 

  15. Laniel MA, Bergeron MJ, Poirier GG, Guerin SL. A nuclear factor other than Spl binds the GC-rich promoter of the gene encoding rat poly(ADPribose) polymerase in vitro. Biochem Cell Biol. 1997;75:427–34.

    Article  PubMed  CAS  Google Scholar 

  16. Maymon BB, Cohen-Armon M, Yavetz H, Yogev L, Lifschitz-Mercer B, Kleiman SE, et al. Role of poly(ADP-ribosyl)ation during human spermatogenesis. Fertil Steril. 2006;86:1402–7.

    Article  PubMed  CAS  Google Scholar 

  17. Di Meglio S, Denegri M, Vallefuoco S, Tramontano F, Scovassi AI, Quesada P. Poly(ADPR) polymerase-1 and poly(ADPR) glycohydrolase level and distribution in differentiating rat germinal cells. Mol Cell Biochem. 2003;248:85–91.

    Article  PubMed  Google Scholar 

  18. Ahmed EA, de Boer P, Philippens ME, Kal HB, de Rooij DG. Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids. Mutat Res. 2010;683(1–2):84–90. 19.

    Article  PubMed  CAS  Google Scholar 

  19. Meyer-Ficca ML, Scherthan H, Burkle A, Meyer RG. Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma. 2005;114:67–74.

    Article  PubMed  CAS  Google Scholar 

  20. Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod. 2011;84(5):900–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, et al. Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod. 2011;84(2):218–28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 5th ed. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  23. Simoni M, Bakker E, Krausz C. EAA/EMQN best practice guidelines for molecular diagnosis of y-chromosomal microdeletions. Int J Androl. 2004;27:240–9.

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169:505–14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci. 2010;35:208–19.

    Article  PubMed  CAS  Google Scholar 

  26. Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010;39:8–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Wu BT, Lin WY, Chou IC, Liu HP, Lee CC, Tsai Y, et al. Association of poly(ADP-ribose) polymerase-1 polymorphism with Tourette syndrome. Neurol Sci. 2013;34:1911–6.

    Article  PubMed  Google Scholar 

  28. Pabalan N, Francisco-Pabalan O, Jarjanazi H, Li H, Sung L, Ozcelik H. Racial and tissue-specific cancer risk associated with PARP1 (ADPRT) Val762Ala polymorphism: a meta-analysis. Mol Biol Rep. 2012;39:11061–72.

    Article  PubMed  CAS  Google Scholar 

  29. Liu HP, Lin WY, Wu BT, Liu SH, Wang WF, Tsai CH, et al. Evaluation of the poly(ADP-ribose) polymerase-1 gene variants in Alzheimer’s disease. J Clin Lab Anal. 2010;24:182–6.

    Article  PubMed  CAS  Google Scholar 

  30. Ozaydin A, Akbas F, Aksoy F, Yildirim YS, Demirhan H, Karakurt F, et al. Investigation of poly (ADP-ribose) polymerase-1 genetic variants as a possible risk for allergic rhinitis. Genet Test Mol Biomark. 2014;18:57–61.

    Article  CAS  Google Scholar 

  31. Tezcan G, Gurel CB, Tutluoglu B, Onaran I, Kanigur-Sultuybek G. The Ala allele at Val762Ala polymorphism in poly(ADP-ribose) polymerase-1 (PARP1) gene is associated with a decreased risk of asthma in a Turkish population. J Asthma. 2009;46:371–4.

    Article  PubMed  CAS  Google Scholar 

  32. Wang XG, Wang ZQ, Tong WM, Shen Y. PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochem Biophys Res Commun. 2007;354:122–6.

    Article  PubMed  CAS  Google Scholar 

  33. Lockett KL, Hall MC, Xu J, Zheng SL, Berwick M, Chuang SC, et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res. 2004;64:6344–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Cun A.

Additional information

Capsule The results of this study suggested that polymorphism of SNP rs1136410 in PARP1 gene may modify the susceptibility to male infertility with oligospermia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Pu, XY., Zhang, RP. et al. Association of common SNP rs1136410 in PARP1 gene with the susceptibility to male infertility with oligospermia. J Assist Reprod Genet 31, 1391–1395 (2014). https://doi.org/10.1007/s10815-014-0311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0311-3

Keywords

Navigation