Skip to main content
Log in

Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyze the seminal plasma of patients with idiopathic/male factor infertility and healthy controls with proven fertility by NMR spectroscopy, with a hope of establishing difference in biomarker profiles, if any, between the groups.

Methods

A total of 103 subjects visiting the infertility clinic of Manipal University with normozoospermic parameters, oligozoospermia, asthenozoospermia, azoospermia and teratozoospermia were included. Semen characteristics were analysed by standard criteria. Seminal plasma was subjected to NMR spectroscopy at a 700 MHz 1H frequency. The resultant data was analyzed by appropriate software.

Results

The analysis revealed significant differences between the fertile control group and other forms of male infertility. Interestingly, seminal plasma profile of the idiopathic infertility group showed distinct segregation from the control population as well as other infertile groups. The difference in biomarker profiles between the idiopathic infertility and the rest of the groups combined could originate from either the up-regulation or down regulation of a several compounds, including lysine, arginine, tyrosine, citrate, proline and fructose.

Conclusion

Our data suggests the presence of a metabolic reason behind the origin of idiopathic infertility. 1H NMR based metabonomic profiling based on concentration of biomarker lysine has the potential to aid in the detection and diagnosis of idiopathic infertility in an efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aaronson DS, Iman R, Walsh TJ, Kurhanewicz J, Turek PJ. A novel application of 1H magnetic resonance spectroscopy: non-invasive identification of spermatogenesis in men with non-obstructive azoospermia. Hum Reprod. 2010;25:847–52.

    Article  PubMed  Google Scholar 

  2. Ahmed Z, Khan MS, Khan MA, Haq A, Rahman J. Seminal fructose in various classes of infertile patients. Pak J Physiol. 2010;6:36–8.

    Google Scholar 

  3. Alexandrino AP, Rodrigues MA, Matsuo T. Evaluation of serum and seminal levels of prostate specific antigen in men with spinal cord injury. J Urol. 2004;171:2230–2.

    Article  PubMed  Google Scholar 

  4. Alexandrino AP, Rodrigues MA, Matsuo T, Schuquel IT, Costa WF, Santilli JC. Evaluation of seminal citrate level by 1H nuclear magnetic resonance spectroscopy in men with spinal cord injury. Spinal Cord. 2009;47:878–81.

    Article  CAS  PubMed  Google Scholar 

  5. Ambasudhan R, Singh K, Agarwal JK, Singh SK, Khanna A, Sah RK, et al. Idiopathic cases of male infertility from a region in India show low incidence of Y-chromosome microdeletion. J Biosci. 2003;28:605–12.

    Article  CAS  PubMed  Google Scholar 

  6. Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, Grober E, et al. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res. 2011;10:941–53.

    Article  CAS  PubMed  Google Scholar 

  7. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.

    Article  CAS  PubMed  Google Scholar 

  8. Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod. 2008;14:679–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chaudhury K, Sharma U, Jagannathan NR, Guha SK. Effect of a new injectable male contraceptive on the seminal plasma amino acids studied by proton NMR spectroscopy. Contraception. 2002;66:199–204.

    Article  PubMed  Google Scholar 

  10. Chew WM, Hricak H, McClure RD, Wendland MF. In vivo human testicular function assessed with P-31 MR spectroscopy. Radiology. 1990;177:743–7.

    Article  CAS  PubMed  Google Scholar 

  11. Deepinder F, Chowdary HT, Agarwal A. Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Rev Mol Diagn. 2007;7:351–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gonzales GF, Villena A. True corrected seminal fructose level: a better marker of seminal vesicle function in infertile male. Int J Androl. 2001;24:255–60.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta A, Mahdi AA, Ahmad MK, Shukla KK, Jaiswer SP, Shankhwar SN. 1H NMR spectroscopic studies on human seminal plasma: a probative discriminant function analysis classification model. J Pharm Biomed Anal. 2011;54:106–13.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta A, Mahdi AA, Shukla KK, Ahmad MK, Bansal N, Sankhwar P, et al. Efficacy of Withania somnifera on seminal plasma metabolites of infertile males: a proton NMR study at 800 MHz. J Ethnopharmacol. 2013;149:208–14.

    Article  CAS  PubMed  Google Scholar 

  15. Hafez B, Goff L, Hafez S. Recent advances in andrology research: physiopathology and clinical application to fertility and infertility. Arch Androl. 1997;39:173–95.

    Article  CAS  PubMed  Google Scholar 

  16. Hamamah S, Seguin F, Barthelemy C, Akoka S, Le Pape A, Lansac J, et al. 1H nuclear magnetic resonance studies of seminal plasma from fertile and infertile men. J Reprod Fertil. 1993;97:51–5.

    Article  CAS  PubMed  Google Scholar 

  17. Hung Y, Huang M. A multi-class IC package type classifier based on kernel-based nonlinear LS-SVM method. J Comput Intell Electron Syst. 2014;7:472–80.

    Article  Google Scholar 

  18. Jonsson M, Linse S, Frohm B, Lundwall A, Malm J. Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen. Biochem J. 2005;387:447–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kovac JR, Lipshultz LI. The significance of insulin-like factor 3 as a marker of intratesticular testosterone. Fertil Steril. 2013;99:66–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kussmann M, Raymond F, Affolter M. Omics-driven biomarker discovery in nutrition and health. J Biotechnol. 2006;124:758–87.

    Article  CAS  PubMed  Google Scholar 

  21. Lamb DJ. A look towards the future: advances in andrology expected to revolutionize the diagnosis and treatment of the infertile male. In: Lipshultz L, Howards S, Niederberger C, editors. Infertility in the male. Cambridge: Cambridge University Press; 2009. p. 642–53.

    Chapter  Google Scholar 

  22. Lynch MJ, Masters J, Pryor JP, Lindon JC, Spraul M, Foxall PJ, et al. Ultra high field NMR spectroscopic studies on human seminal fluid, seminal vesicle and prostatic secretions. J Pharm Biomed Anal. 1994;12:5–19.

    Article  CAS  PubMed  Google Scholar 

  23. Maher AD, Cloarec O, Patki P, Craggs M, Holmes E, Lindon JC, et al. Dynamic biochemical information recovery in spontaneous human seminal fluid reactions via 1H NMR kinetic statistical total correlation spectroscopy. Anal Chem. 2009;81:288–95.

    Article  CAS  PubMed  Google Scholar 

  24. Maher AD, Patki P, Lindon JC, Want EJ, Holmes E, Craggs M, et al. Seminal oligouridinosis: low uridine secretion as a biomarker for infertility in spinal neurotrauma. Clin Chem. 2008;54:2063–6.

    Article  CAS  PubMed  Google Scholar 

  25. Mallidis C, Agbaje IM, Rogers DA, Glenn JV, Pringle R, Atkinson AB, et al. Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int J Androl. 2009;32:295–305.

    Article  CAS  PubMed  Google Scholar 

  26. Mallidis C, Green BD, Rogers D, Agbaje IM, Hollis J, Migaud M, et al. Metabolic profile changes in the testes of mice with streptozotocin-induced type 1 diabetes mellitus. Int J Androl. 2009;32:156–65.

    Article  CAS  PubMed  Google Scholar 

  27. Marieb EN, Hoehn K. Human anatomy and physiology. 7th ed. Menlo Park, CA: Benjamin/Cummings; 2007.

    Google Scholar 

  28. Mendes P. Emerging bioinformatics for the metabolome. Brief Bioinform. 2002;3:134–45.

    Article  CAS  PubMed  Google Scholar 

  29. Nobeli I, Thornton JM. A bioinformatician’s view of the metabolome. Bioessays. 2006;28:534–45.

    Article  CAS  PubMed  Google Scholar 

  30. Pampalakis G, Sotiropoulou G. Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer. Biochim Biophys Acta. 2007;1776:22–31.

    CAS  PubMed  Google Scholar 

  31. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc Natl Acad Sci U S A. 1971;68:2374–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006;7:R40.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ponglowhapan S, Essen- Gustavsson B, Linde Forsberg C. Influence of glucose and fructose in the extender during long term storage of chilled canine semen. Theriogentology. 2004;62:1498–517.

    Article  CAS  Google Scholar 

  34. Rhee SY, Dickerson J, Xu D. Bioinformatics and its applications in plant biology. Annu Rev Plant Biol. 2006;57:335–60.

    Article  CAS  PubMed  Google Scholar 

  35. Rohr G, Eggert-Kruse W, Kalbitzer HR. NMR spectroscopy in andrology: research uses and possible clinical applications. Int J Androl. 1995;18:12–9.

    Article  PubMed  Google Scholar 

  36. Roth MY, Lin K, Bay K, Amory JK, Anawalt BD, Matsumoto AM, et al. Serum insulin-like factor 3 is highly correlated with intratesticular testosterone in normal men with acute, experimental gonadotropin deficiency stimulated with low-dose human chorionic gonadotropin: a randomized, controlled trial. Fertil Steril. 2013;99:132–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Schiller J, Arnhold J, Glander HJ, Arnold K. Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy - effects of freezing and thawing. Chem Phys Lipids. 2000;106:145–56.

    Article  CAS  PubMed  Google Scholar 

  38. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90:77–83.

    Article  PubMed  Google Scholar 

  39. Segalen J, de Certaines JD, Le Calvé M, Colleu D, Bansard JY, Rio M. 1H nuclear magnetic resonance of human seminal plasma in in vitro fertilization attempts: use of automatic spectrum analysis. J Reprod Fertil. 1995;103:181–7.

    Article  CAS  PubMed  Google Scholar 

  40. Seli E, Botros L, Sakkas D, Burns DH. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2008;90:2183–9.

    Article  PubMed  Google Scholar 

  41. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88:1350–7.

    Article  PubMed  Google Scholar 

  42. Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB, et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010;94:535–42.

    Article  PubMed  Google Scholar 

  43. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–50.

    Article  CAS  PubMed  Google Scholar 

  44. Singh R, Sinclair KD. Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology. 2007;68:S56–62.

    Article  CAS  PubMed  Google Scholar 

  45. Thonneau P, Spira A. Prevalence of infertility: international data and problems of measurement. Eur J Obstet Gynecol Reprod Biol. 1991;38:43–52.

    Article  CAS  PubMed  Google Scholar 

  46. Tomlins AM, Foxall PJ, Lynch MJ, Parkinson J, Everett JR, Nicholson JK. High resolution 1H NMR spectroscopic studies on dynamic biochemical processes in incubated human seminal fluid samples. Biochim Biophys Acta. 1998;1379:367–80.

    Article  CAS  PubMed  Google Scholar 

  47. Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PG, et al. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod. 2008;23:1499–504.

    Article  CAS  PubMed  Google Scholar 

  48. World Health Organization. WHO laboratory manual for the examination of human semen and semen cervical mucus interaction. 2nd ed. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  49. World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  50. Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics. 2013;1:92–107.

    CAS  Google Scholar 

  51. Yatsenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, et al. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet. 2006;15:3411–9.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida K, Yamasaki T, Yoshiike M, Takano S, Sato I, Iwamoto T. Quantification of seminal plasma motility inhibitor/semenogelin in human seminal plasma. J Androl. 2003;24:878–84.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The guidance by Dr. Satish Kumar Adiga, Professor and Clinical Embryologist, Division of Reproductive Medicine, Department of OBG, Kasturba Medical College, Manipal, India is gratefully acknowledged by the authors. The help of National Facility for High Field NMR in TIFR is greatly acknowledged. AS acknowledges the Council of Scientific and Industrial Research, Government of India, for providing SPM Fellowship.

Conflicts of interest

The authors report no financial or commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varshini Jayaraman.

Additional information

Soumita Ghosh and Arjun Sengupta these authors contributed equally to this work.

Capsule NMR spectroscopy on seminal plasma of fertile and infertile men revealed significant differences in biomarker profile between idiopathic and other forms of infertility.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 28 kb)

ESM 2

(JPEG 355 kb)

High resolution image (TIFF 3514 kb)

ESM 3

(JPEG 364 kb)

High resolution image (TIFF 3586 kb)

ESM 4

(JPEG 358 kb)

High resolution image (TIFF 2088 kb)

ESM 5

(JPEG 374 kb)

High resolution image (TIFF 2235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaraman, V., Ghosh, S., Sengupta, A. et al. Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet 31, 1195–1204 (2014). https://doi.org/10.1007/s10815-014-0282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0282-4

Keywords

Navigation