Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 10, pp 1295–1301 | Cite as

AMH in women with diminished ovarian reserve: potential differences by FMR1 CGG repeat level

  • Lisa M. Pastore
  • Timothy L. McMurry
  • Christopher D. Williams
  • Valerie L. Baker
  • Steven L. Young
Reproductive Physiology and Disease



We explored whether AMH, as a surrogate for oocyte supply, varies by FMR1 genotype in women diagnosed with diminished ovarian reserve (DOR), a subset of the Primary Ovarian Insufficiency phenotype. Research is inconsistent on the relationship between AMH and FMR1 repeat length, controlling for age.


Seventy-nine cycling women diagnosed with DOR, and without a family history of fragile X syndrome, provided blood for FMR1 and AMH testing. DOR was defined as elevated FSH and/or low AMH and/or low antral follicle count, with regular menses. FMR1 CGG repeats were stratified by the larger allele <35 repeats (n = 70) v. ≥35 repeats (n = 9). Quadratic and linear models were fit to predict log (AMH) controlling for age. The AMH sample used as the outcome variable was drawn at a later date than the diagnostic AMH.


Serum AMH concentration median was 0.30 ng/mL; Ages ranged from 26–43 years. A quadratic model (including age2) did not show a relationship with FMR1 CGG level (p-value = 0.25). A linear model of log (AMH), corresponding to an exponential decline of AMH with increasing age, was significantly different, and had a steeper slope, for women with ≥ 35 CGG repeats than women with < 35 repeats (p = 0.035).


Findings suggest a greater rate of follicular loss that starts at later ages in women with DOR and ≥ 35 CGG repeats.


FMR1 Primary ovarian insufficiency Diminished ovarian reserve Anti-mullerian hormone Ovarian reserve Female infertility Statistical modeling 



We thank the participants in this study, the study co-investigators who are not also co-authors (Dr. Lawrence Silverman, University of Virginia; Dr. Joel Finkelstein, Massachusetts General Hospital). All AMH testing was conducted at the Radioimmunoassay Core of the Reproductive Endocrine Sciences Center, Massachusetts General Hospital under the direction of Dr. Patrick Sluss. We are grateful to Carolina Conceptions for allowing recruitment through their clinic in North Carolina. We also thank the clinical research coordinators at all participating clinics: Parchayi Dalal, Hannah Spencer, Amy Brown, Amanda DeSmit, Angie Morey, Rebecca Briggs, and Janetta Phillips. This work was supported by the Eunice K. Shriver National Center for Child Health and Human Development at the National Institutes of Health (grants HD057485, HD052768 and HD068440 to Lisa Pastore). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Broer SL, Eijkemans MJC, Scheffer GJ, van Rooij IAJ, de Vet A, Themmen APN, et al. Anti-Müllerian Hormone Predicts Menopause: A Long-Term Follow-Up Study in Normoovulatory Women. J Clin Endocrin Metab. 2011;96(8):2532–9. doi: 10.1210/jc.2010-2776.CrossRefGoogle Scholar
  2. 2.
    Choe SA, Kim KC, Lee JY, Kim CH, Hwang D, Jee BC. The relationship between the number of CGG repeats and serum level of anti-Mullerian hormone in women without FMR1 premutation. Eur J Obstet Gynecol Reprod Biol. 2013. doi: 10.1016/j.ejogrb.2013.05.002.PubMedGoogle Scholar
  3. 3.
    De Geyter C, M’Rabet N, De Geyter J, Zurcher S, Moffat R, Bosch N, et al. Similar prevalence of expanded CGG repeat lengths in the fragile X mental retardation I gene among infertile women and among women with proven fertility: a prospective study. Genetics in Med. 2013. doi: 10.1038/gim.2013.146.Google Scholar
  4. 4.
    Friese C, Becker G, Nachtigall RD. Rethinking the biological clock: eleventh-hour moms, miracle moms and meanings of age-related infertility. Social Sci Med. 2006;63(6):1550–60.CrossRefGoogle Scholar
  5. 5.
    Gleicher N, Weghofer A, Barad DH. A pilot study of premature ovarian senescence: I. Correlation of triple CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-Müllerian hormone. Fertil Steril. 2009;91(5):1700–6. doi: 10.1016/j.fertnstert.2008.01.098.PubMedCrossRefGoogle Scholar
  6. 6.
    Gleicher N, Weghofer A, Oktay K, Barad DH. Correlation of triple repeats on the FMR1 (fragile X) gene to ovarian reserve: A new infertility test? Acta Obstet Gynecol Scand. 2009;88(9):1024–30. doi: 10.1080/00016340903171058.PubMedCrossRefGoogle Scholar
  7. 7.
    Hadlow N, Longhurst K, McClements A, Natalwala J, Brown SJ, Matson PL. Variation in antimüllerian hormone concentration during the menstrual cycle may change the clinical classification of the ovarian response. Fertil Steril. 2013;99(6). doi:10.1016/j.bbr.2011.03.031Google Scholar
  8. 8.
    Hansen KR, Hodnett GM, Knowlton N, Craig LB. Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil Steril. 2011;95(1):170–5. doi: 10.1016/j.fertnstert.2010.04.006.PubMedCrossRefGoogle Scholar
  9. 9.
    Hehenkamp WJ, Looman CW, Themmen AP, de Jong FH, Te Velde ER, Broekmans FJ. Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J Clin Endocrin Metab. 2006;91(10):4057–63.CrossRefGoogle Scholar
  10. 10.
    Iino K, Tarakida A, Abe K, Taniguchi R, Higuchi T, Takahashi I, et al. Role of antimullerian hormone as a biomarker of the menopausal transition. Menopause. 2013;20(2):218–22. doi: 10.1097/gme.0b013e3182611574.PubMedGoogle Scholar
  11. 11.
    Kallio S, Puurunen J, Ruokonen A, Vaskivuo T, Piltonen T, Tapanainen JS. Antimullerian hormone levels decrease in women using combined contraception independently of administration route. Fertil Steril.99(5):1305–10Google Scholar
  12. 12.
    Karimov CB, Moragianni VA, Cronister A, Srouji S, Petrozza J, Racowsky C, et al. Increased frequency of occult fragile X-associated primary ovarian insufficiency in infertile women with evidence of impaired ovarian function. Hum Reprod. 2011;26(8):2077–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Kline JK, Kinney AM, Levin B, Brown SA, Hadd AG, Warburton D. Intermediate CGG repeat length at the FMR1 locus is not associated with hormonal indicators of ovarian age. Menopause. 2014. doi: 10.1097/gme.0000000000000139
  14. 14.
    Leader B, Hegde A, Baca Q, Stone K, Lannon B, Seifer DB, et al. High frequency of discordance between antimullerian hormone and follicle-stimulating hormone levels in serum from estradiol-confirmed days 2 to 4 of the menstrual cycle from 5,354 women in U.S. fertility centers. Fertil Steril. 2012;98(4):1037–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Levi AJ, Raynault MF, Bergh PA, Drews MR, Miller BT, Scott Jr RT. Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril. 2001;76(4):666–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Nelson SM, La Marca A. The journey from the old to the new AMH assay: how to avoid getting lost in the values. Repro Biomed Online. 2011;23(4):411–20.CrossRefGoogle Scholar
  17. 17.
    Nelson SM, Messow MC, Wallace AM, Fleming R, McConnachie A. Nomogram for the decline in serum antimüllerian hormone: a population study of 9,601 infertility patients. Fertil Steril. 2011;95(2):736–41. doi: 10.1016/j.fertnstert.2010.08.022. e3.PubMedCrossRefGoogle Scholar
  18. 18.
    Panidis D, Georgopoulos NA, Piouka A, Katsikis I, Saltamavros AD, Decavalas G et al. The impact of oral contraceptives and metformin on anti-Mullerian hormone serum levels in women with polycystic ovary syndrome and biochemical hyperandrogenemia. Gynecol Endocrinol.27(8):587–92Google Scholar
  19. 19.
    Pastore LM, Young SL, Baker VM, Karns LB, Williams CD, Silverman LM. Elevated Prevalence of 35–44 FMR1 Trinucleotide Repeats in Women with Diminished Ovarian Reserve. Reprod Sci. 2012;19(11):1226–31.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Peprah E. Fragile X Syndrome: The FMR1 CGG Repeat Distribution Among World Populations. Ann Hum Genet. 2011. doi: 10.1111/j.1469-1809.2011.00694.x.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Rohr J, Allen EG, Charen K, Giles J, He W, Dominguez C, et al. Anti-Mullerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: a preliminary study. Hum Reprod. 2008;23(5):1220–5. doi: 10.1093/humrep/den050.PubMedCrossRefGoogle Scholar
  22. 22.
    Schuh-Huerta SM, Johnson NA, Rosen MP, Sternfeld B, Cedars MI, Reijo Pera RA. Genetic variants and environmental factors associated with hormonal markers of ovarian reserve in Caucasian and African American women. Hum Reprod. 2012;27(2):594–608. doi: 10.1093/humrep/der391.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Scott Jr RT, Hofmann GE. Prognostic assessment of ovarian reserve. Fertil Steril. 1995;63(1):1–11.PubMedGoogle Scholar
  24. 24.
    Scriver J, Baker V, Young S, Behr B, Pastore L. Inter-laboratory validation of the measurement of follicle stimulating hormone (FSH) after various lengths of frozen storage. Reprod Biology Endocrin. 2010;8(1):145.CrossRefGoogle Scholar
  25. 25.
    Sharara FI, Scott JRT, Seifer DB. The detection of diminished ovarian reserve in infertile women. Am J Obstet Gynecol. 1998;179(3):804–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Sherman SL. Premature ovarian failure in the fragile X syndrome. Am J Med Genet. 2000;97:189–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Sowers M, McConnell D, Gast K, Zheng H, Nan B, McCarthy JD. Anti-Müllerian hormone and inhibin B variability during normal menstrual cycles. Fertil Steril. 2010;94(4):1482–6. doi: 10.1016/j.fertnstert.2009.07.1674.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Spath MA, Feuth TB, Allen EG, Smits AP, Yntema HG, van Kessel AG, et al. Intra-individual stability over time of standardized anti-Mullerian hormone in FMR1 premutation carriers. Hum Reprod. 2011;26(8):2185–91. doi: 10.1093/humrep/der146.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Streuli I, Fraisse T, Pillet C, Ibecheole V, Bischof P, de Ziegler D. Serum antimullerian hormone levels remain stable throughout the menstrual cycle and after oral or vaginal administration of synthetic sex steroids. Fertil Steril.90(2):395–400Google Scholar
  30. 30.
    Streuli I, Fraisse T, Ibecheole V, Moix I, Morris MA, de Ziegler D. Intermediate and premutation FMR1 alleles in women with occult primary ovarian insufficiency. Fertil Steril. 2009;92(2):464–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Taieb J, Olivennes F, Birr AS, Benattar C, Righini C, Frydman R, et al. Comparison of day 3 FSH serum values as determined by six different immunoassays. Hum Reprod. 2002;17(4):926–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Therneau T. Survival: A Package for Survival Analysis in S. R package 2.37-2 edition ed2012.Google Scholar
  33. 33.
    Visser JA, Themmen AP. Anti-Mullerian hormone and folliculogenesis. Mol Cell Endocrinol. 2005;234(1–2):81–6. doi: 10.1016/j.mce.2004.09.008.PubMedCrossRefGoogle Scholar
  34. 34.
    Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10(2):77–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lisa M. Pastore
    • 1
  • Timothy L. McMurry
    • 2
  • Christopher D. Williams
    • 3
  • Valerie L. Baker
    • 4
  • Steven L. Young
    • 5
  1. 1.Department of Obstetrics and Gynecology, School of MedicineUniversity of VirginiaCharlottesvilleUSA
  2. 2.Public Health Sciences DepartmentUniversity of VirginiaCharlottesvilleUSA
  3. 3.Reproductive Medicine and Surgery Center of VirginiaCharlottesvilleUSA
  4. 4.Department of Obstetrics and GynecologyStanford University School of MedicinePalo AltoUSA
  5. 5.OB/GYN DepartmentUniversity of North CarolinaCharlottesvilleUSA

Personalised recommendations