Skip to main content

Advertisement

Log in

Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

In vitro follicle growth (IVFG) is an investigational fertility preservation technique in which immature follicles are grown in culture to produce mature eggs that can ultimately be fertilized. Although progress has been made in growing primate primary and secondary follicles in vitro, it has been a relatively greater challenge to isolate and culture primordial follicles. The purpose of this study was to develop methods to grow human primordial follicles in vitro using alginate hydrogels.

Methods

We obtained human ovarian tissue for research purposes through the National Physicians Cooperative from nationwide sites and used it to test two methods for culturing primordial follicles. First, primordial follicles were isolated from the ovarian cortex and encapsulated in alginate hydrogels. Second, 1 mm × 1 mm pieces of 500 μm-thick human ovarian cortex containing primordial follicles were encapsulated in alginate hydrogels, and survival and follicle development within the tissue was assessed for up to 6 weeks.

Results

We found that human ovarian tissue could be kept at 4 °C for up to 24 h while still maintaining follicle viability. Primordial follicles isolated from ovarian tissue did not survive culture. However, encapsulation and culture of ovarian cortical pieces supported the survival, differentiation, and growth of primordial and primary follicles. Within several weeks of culture, many of the ovarian tissue pieces had formed a defined surface epithelium and contained growing preantral and antral follicles.

Conclusions

The early stages of in vitro human follicle development require the support of the native ovarian cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kort JD, Eisenberg ML, Millheiser LS, Westphal LM. Fertility issues in cancer survivorship. CA A Cancer Journal for Clinicians. 2013 Oct 29;:n/a–n/a.

  2. Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med Mass Med Soc. 2009;360(9):902–11.

    Article  CAS  Google Scholar 

  3. Sklar CA, Mertens AC, Mitby P, Whitton J, Stovall M, Kasper C, et al. Premature Menopause in Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. JNCI Journal of the National Cancer Institute [Internet]. 2006 Jul 3;98(13):890–6. Available from: http://jnci.oxfordjournals.org/content/98/13/890.full.pdf+html

  4. Lantinga GM, Simons AHM, Kamps WA, Postma A. Imminent ovarian failure in childhood cancer survivors. Eur J Cancer. 2006;42(10):1415–20.

    Article  CAS  PubMed  Google Scholar 

  5. Green DM, Sklar CA, Boice JD, Mulvihill JJ, Whitton JA, Stovall M, et al. Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the childhood cancer survivor study. J Clin Oncol Am Soc Clin Oncol. 2009;27(14):2374–81.

    Article  Google Scholar 

  6. Chemaitilly W, Mertens AC, Mitby P, Whitton J, Stovall M, Yasui Y, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91(5):1723–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kondapalli LA, Dillon KE, Sammel MD, Ray A, Prewitt M, Ginsberg JP, et al. Quality of life in female cancer survivors: is it related to ovarian reserve? Qual Life Res. 2013;23(2):585–92.

    Article  PubMed  Google Scholar 

  8. Woodruff TK. The Emergence of a New Interdiscipline: Oncofertility. In: Woodruff TK, Snyder KA, editors. Oncofertility Fertility Preservation for Cancer Survivors. Springer US; 2007. pp. 3–11.

  9. Woodruff TK. From the bench to bedside to babies: translational medicine made possible by funding multidisciplinary team science. J Assist Reprod Genet. 2013 Aug 23.

  10. Woodruff TK. The oncofertility consortium—addressing fertility in young people with cancer. Nat Publ Group. 2010;7(8):466–75.

    Google Scholar 

  11. Medicine TPCOTASFR, Technology TSFAR. Mature oocyte cryopreservation: a guideline. 2013. pp. 37–43.

  12. Wallace WHB, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6(4):10.

    Article  Google Scholar 

  13. Schmidt KT, Larsen EC, Andersen CY, Andersen AN. Risk of ovarian failure and fertility preserving methods in girls and adolescents with a malignant disease. BJOG: An Int J Obstet Gynaecol. 2009;117(2):163–74.

    Article  Google Scholar 

  14. Luyckx V, Scalercio S, Jadoul P, Amorim CA, Soares M, Donnez J, et al. Evaluation of cryopreserved ovarian tissue from prepubertal patients after long-term xenografting and exogenous stimulation. Fertil Steril Elsevier Inc. 2013;100(5):1350–3.

    Article  CAS  Google Scholar 

  15. Ernst E, Kjærsgaard M, Birkebæk NH, Clausen N, Andersen CY. Case report: stimulation of puberty in a girl with chemo- and radiation therapy induced ovarian failure by transplantation of a small part of her frozen/thawed ovarian tissue. Eur J Cancer Elsevier. 2013;49(4):911–4.

    Article  Google Scholar 

  16. Oktay KK, Buyuk EE, Rosenwaks ZZ, Rucinski JJ. A technique for transplantation of ovarian cortical strips to the forearm. Fertil Steril. 2003;80(1):193–8.

    Article  PubMed  Google Scholar 

  17. Stern CJ, Gook D, Hale LG, Agresta F, Oldham J, Rozen G, et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod. 2013;28(11):2996–9.

    Article  CAS  PubMed  Google Scholar 

  18. Donnez JJ, Dolmans M-M, Demylle DD, Jadoul PP, Pirard CC, Squifflet JJ, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–10.

    Article  CAS  PubMed  Google Scholar 

  19. Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353(3):318–21.

    Article  CAS  PubMed  Google Scholar 

  20. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009;15(6):649–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M, et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23(10):2266–72.

    Article  PubMed  Google Scholar 

  22. Silber S, Kagawa N, Kuwayama M, Gosden R. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril Elsevier Ltd. 2010;94(6):2191–6.

    Article  Google Scholar 

  23. Piver P, Amiot C, Agnani G, Pech J, Rohrlich PS. Two pregnancies obtained after a new technique of autotransplantation of cryopreserved ovarian tissue. Hum Reprod. 2009

  24. Sánchez-Serrano M, Crespo J, Mirabet V, Cobo AC, Escribá M-J, Simón C, et al. Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertil Steril. 2010;93(1):268.e11–3.

    Article  PubMed  Google Scholar 

  25. Revelli A, Marchino G, Dolfin E, Molinari E, Piane LD, Salvagno F, et al. Live birth after orthotopic graftingof autologous cryopreserved ovariantissue and spontaneous conceptionin Italy. Fertil Steril Elsevier Inc. 2013;99(1):227–30.

    Article  Google Scholar 

  26. Roux C, Amiot C, Agnani G, Aubard Y, Rohrlich P-S, Piver P. Live birth after ovarian tissue autograft in a patient with sickle cell disease treated by allogeneic bone marrow transplantation. Fertil Steril. 2010;93(7):2413–9.

    Article  PubMed  Google Scholar 

  27. Revel A, Laufer N, Ben Meir A, Lebovich M, Mitrani E. Micro-organ ovarian transplantation enables pregnancy: a case report. Hum Reprod. 2011;26(5):1097–103.

    Article  PubMed  Google Scholar 

  28. Dittrich R, Lotz L, Keck G, Hoffmann I, Mueller A, Beckmann MW, et al. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril. 2012;97(2):387–90.

    Article  PubMed  Google Scholar 

  29. Donnez J, Dolmans M-M, Pellicer A, Diaz-Garcia C, Serrano MS, Schmidt KT, et al. Restoration of ovarian activity and pregnancy after transplantationof cryopreserved ovarian tissue:a review of 60 casesof reimplantation. Fertil Steril Elsevier Inc. 2013;99(6):1503–13.

    Article  Google Scholar 

  30. Silber SJ. Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod. 2012;18(2):59–67.

    Article  CAS  PubMed  Google Scholar 

  31. Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. A review of 13 live births. Ann Med. 2011;43(6):437–50.

    Article  PubMed  Google Scholar 

  32. Shaw JM, Bowles J, Koopman P, Wood EC, Trounson AO. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod. 1996;11(8):1668–73.

    Article  CAS  PubMed  Google Scholar 

  33. Dolmans M-M, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908–14.

    Article  CAS  PubMed  Google Scholar 

  34. Abir R, Aviram A, Feinmesser M, Stein J, Yaniv I, Parnes D, et al. Ovarian minimal residual disease in chronic myeloid leukaemia. Reprod Biomed online Reprod Healthc Ltd. 2014;28(2):255–60.

    CAS  Google Scholar 

  35. Xu M, Fazleabas AT, Shikanov A, Jackson E, Barrett SL, Hirshfeld-Cytron J, et al. In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol Reprod. 2011;84(4):689–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24(10):2531–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009;81(3):587–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007;28(30):4439–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Xu M, Kreeger PK, Shea LD, Woodruff TK. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006;12(10):2739–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hornick JE, Duncan FE, Shea LD, Woodruff TK. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod. 2012;27(6):1801–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hornick JE, Duncan FE, Shea LD, Woodruff TK. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction. 2013;145(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  42. Muruvi W, Picton HM, Rodway RG, Joyce IM. In vitro growth of oocytes from primordial follicles isolated from frozen-thawed lamb ovaries. Theriogenology. 2005;64(6):1357–70.

    Article  CAS  PubMed  Google Scholar 

  43. O’Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68(5):1682–6.

    Article  PubMed  Google Scholar 

  44. van Wezel IL, Rodgers RJ. Morphological characterization of bovine primordial follicles and their environment in vivo. Biol Reprod. 1996;55(5):1003–11.

    Article  PubMed  Google Scholar 

  45. Woodruff TK, Shea LD. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet. 2011;28(1):3–6.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Meirow D, Fasouliotis SJ, Nugent D, Schenker JG, Gosden RG, Rutherford AJ. A laparoscopic technique for obtaining ovarian cortical biopsy specimens for fertility conservation in patients with cancer. Fertil Steril. 1999;71(5):948–51.

    Article  CAS  PubMed  Google Scholar 

  47. Gougeon AA. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55.

    Article  CAS  PubMed  Google Scholar 

  48. Xu M, West E, Shea LD, Woodruff TK. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol Reprod. 2006;75(6):916–23.

    Article  CAS  PubMed  Google Scholar 

  49. Barrett SL, Albertini DF. Allocation of gamma-tubulin between oocyte cortex and meiotic spindle influences asymmetric cytokinesis in the mouse oocyte. Biol Reprod. 2007;76(6):949–57.

    Article  CAS  PubMed  Google Scholar 

  50. Pavone ME, Hirshfeld-Cytron J, Tingen C, Thomas C, Thomas J, Lowe MP, et al. Human Ovarian Tissue Cortex Surrounding Benign and Malignant Lesions. Reproductive Sciences. 2013 Oct 4

  51. Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl. 2003;61:49–54.

    CAS  PubMed  Google Scholar 

  52. Abir R, Fisch B, Nitke S, Okon E, Raz A, Ben RZ. Morphological study of fully and partially isolated early human follicles. Fertil Steril. 2001;75(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  53. Abir RR, Roizman PP, Fisch BB, Nitke SS, Okon EE, Orvieto RR, et al. Pilot study of isolated early human follicles cultured in collagen gels for 24 h. Hum Reprod. 1999;14(5):1299–301.

    Article  CAS  PubMed  Google Scholar 

  54. Hovatta O. Cryopreservation and culture of human ovarian cortical tissue containing early follicles. Eur J Obstet Gynecol Reprod Biol. 2004;113:S50–4.

    Article  PubMed  Google Scholar 

  55. Hovatta O, Silye R, Abir R, Krausz T, Winston RM. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod. 1997;12(5):1032–6.

    Article  CAS  PubMed  Google Scholar 

  56. Lerer-Serfaty G, Samara N, Fisch B, Shachar M, Kossover O, Seliktar D, et al. Attempted application of bioengineered/biosynthetic supporting matrices with phosphatidylinositol-trisphosphate-enhancing substances to organ culture of human primordial follicles. J Assist Reprod Genet. 2013;30(10):1279–88.

    Article  PubMed  Google Scholar 

  57. Schmidt KLT, Byskov AG, Andersen AN, Müller J, Andersen CY. Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod. 2003;18(6):1158–64.

    Article  CAS  PubMed  Google Scholar 

  58. Jackson KS, Inoue K, Davis DA, Hilliard TS, Burdette JE. Three-dimensional ovarian organ culture as a tool to study normal ovarian surface epithelial wound repair. Endocrinology. 2009;150(8):3921–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Smitz J, Dolmans M-M, Donnez J, Fortune JE, Hovatta O, Jewgenow K, et al. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update. 2010;16(4):395–414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hovatta O, Wright C, Krausz T, Hardy K, Winston RM. Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Hum Reprod. 1999;14(10):2519–24.

    Article  CAS  PubMed  Google Scholar 

  61. Wright CS, Hovatta O, Margara R, Trew G, Winston R, Franks S, et al. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod [Internet]. ESHRE; 1999 May 21;14(6):1555–62. Available from: http://humrep.oxfordjournals.org/content/14/6/1555.full.pdf+html

  62. Picton HMH, Gosden RGR. In vitro growth of human primordial follicles from frozen-banked ovarian tissue. Mol Cell Endocrinol. 2000;166(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  63. Scott JE, Zhang P, Hovatta O. Benefits of 8-bromo-guanosine 3′, 5′-cyclic monophosphate (8-br-cGMP) in human ovarian cortical tissue culture. Reprod BioMed Online Elsevier. 2004;8(3):319–24.

    Article  CAS  Google Scholar 

  64. Amorim CA, Van Langendonckt A, David A, Dolmans M-M, Donnez J. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod. 2008;24(1):92–9.

    Article  PubMed  Google Scholar 

  65. Schmidt KLT, Ernst E, Byskov AG, Andersen AN, Andersen CY. Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. Hum Reprod. 2003;18(12):2654–9.

    Article  CAS  PubMed  Google Scholar 

  66. Duncan FE, Hornick JE, Lampson MA, Schultz RM, Shea LD, Woodruff TK. Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell. 2012;11(6):1121–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Anderson RA, McLaughlin M, Wallace WHB, Albertini DF, Telfer EE. The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence. Hum Reprod. 2013;29(1):97–106.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Faddy MJ, Gosden RG. A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod. 1996;11(7):1484–6.

    Article  CAS  PubMed  Google Scholar 

  69. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7(10):1342–6.

    CAS  PubMed  Google Scholar 

  70. Kristensen SG, Rasmussen A, Byskov AG, Andersen CY. Isolation of pre-antral follicles from human ovarian medulla tissue. Hum Reprod. 2010;26(1):157–66.

    Article  PubMed  Google Scholar 

  71. West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod. 2008;80(3):432–9.

    Article  PubMed  Google Scholar 

  72. Tagler D, Makanji Y, Tu T, Bernabé BP, Lee R, Zhu J, et al. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol Bioeng. 2014 Jan 22;:n/a–n/a.

  73. Wandji SA, Srsen V, Nathanielsz PW, Eppig JJ, Fortune JE. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod. 1997;12(9):1993–2001.

    Article  CAS  PubMed  Google Scholar 

  74. Telfer EE, McLaughlin M, Ding C, Thong KJ. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod. 2008;23(5):1151–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kedem A, Hourvitz A, Fisch B, Shachar M, Cohen S, Ben-Haroush A, et al. Alginate scaffold for organ culture of cryopreserved-thawed human ovarian cortical follicles. J Assist Reprod Genet. 2011;28(9):761–9.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Telfer E, McLaughlin M. In vitro development of ovarian follicles. Semin Reprod Med. 2011;29(01):015–23.

    Article  CAS  Google Scholar 

  77. Li J, Kawamura K, Cheng Y, Liu S, KLEIN C, Liu S, et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA Natl Acad Sci. 2010;107(22):10280–4.

    Article  CAS  Google Scholar 

  78. Kawamura K, Cheng Y, Suzuki N, Deguchi M, Sato Y, Takae S, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A. 2013;110(43):17474–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Magalhães-Padilha DM, Fonseca GR, Haag KT, Wischral A, Gastal MO, Jones KL, et al. Long-term in vitro culture of ovarian cortical tissue in goats: effects of FSH and IGF-I on preantral follicular development and FSH and IGF-I receptor mRNA expression. Cell Tissue Res. 2012;350(3):503–11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge all participants who donated ovarian tissue for the research portion of this protocol and the personnel of the National Physicians Cooperative who facilitated these studies. We also thank Megan Romero and Keisha Barreto from the Ovarian Histology Core at Northwestern University for their technical expertise and R. Schultz and S. Medvedev from the University of Pennsylvania for the use of their MSY2 antisera. This research is funded in part by the National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development through the U54 HD076188 grant. The Oncofertility Consortium® is funded through the NIH Roadmap for Medical Research, Grant UL1DE19587 and PL1CA133835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa K. Woodruff.

Additional information

Capsule A novel compound heterozygous mutation involving exon 1 and 10 resulting in LH/hCG resistance, infertility and female phenotype in XY and XX siblings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Encapsulation with alginate at different concentrations similarly support human ovarian cortex in culture. Representative H&E images of tissue in 2 % alginate (A, participant R) 0.5 % alginate (B, participant N) and 0.25 % alginate (C, participant R) each grown for 3 weeks in culture (scale bar, 50 μm). (PPT 2973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laronda, M.M., Duncan, F.E., Hornick, J.E. et al. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet 31, 1013–1028 (2014). https://doi.org/10.1007/s10815-014-0252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0252-x

Keywords

Navigation