Skip to main content

Advertisement

Log in

Effect of red light on the development and quality of mammalian embryos

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess irradiance and total energy dose from different microscopes during the in-vitro embryonic developmental cycle in mouse and pig and to evaluate its effect on embryonic development and quality in pig.

Method

Spectral scalar irradiance (380–1050 nm) was measured by a fiber-optic microsensor in the focal plane of a dissection microscope, an inverted microscope and a time-lapse incubation system. Furthermore, the effect of three different red light levels was tested in the time-lapse system on mouse zygotes for 5 days, and on porcine zona-intact and zona-free parthenogenetically activated (PA) embryos for 6 days.

Results

The time-lapse system used red light centered at 625 nm and with a lower irradiance level as compared to the white light irradiance levels on the dissection and inverted microscopes, which included more energetic radiation <550 nm. Even after 1000 times higher total energy dose of red light exposure in the time-lapse system, no significant difference was found neither in blastocyst development of mouse zygotes nor in blastocyst rates and total cell number of blastocysts of porcine PA embryos.

Conclusions

Our results indicate that red light (625 nm, 0.34 W/m2) used in the time-lapse incubation system does not decrease the development and quality of blastocysts in both mouse zygotes and porcine PA embryos (both zona-intact and zona-free).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schultz RM. Of light and mouse embryos: Less is more. Proceedings of the National Academy of Sciences of the United States of America 2007; 104(37):14547–14548

  2. Korhonen K, Sjovall S, Viitanen J, Ketoja E, Makarevich A, Peippo J. Viability of bovine embryos following exposure to the green filtered or wider bandwidth light during in vitro embryo production. Human Reproduction. 2009;24(2):308–14.

    Article  PubMed  Google Scholar 

  3. Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(36):14289–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Puissant F, Vanrysselberge M, Barlow P, Deweze J, Leroy F. Embryo Scoring As A Prognostic Tool in Ivf Treatment. Human Reproduction. 1987;2(8):705–8.

    CAS  PubMed  Google Scholar 

  5. Fisch JD, Rodriguez H, Ross R, Overby G, Sher G. The Graduated Embryo Score (GES) predicts blastocyst formation and pregnancy rate from cleavage-stage embryos. Human Reproduction. 2001;16(9):1970–5.

    Article  CAS  PubMed  Google Scholar 

  6. Vernon M, Stern JE, Ball GD, Wininger D, Mayer J, Racowsky C. Utility of the national embryo morphology data collection by the Society for Assisted Reproductive Technologies (SART): correlation between day-3 morphology grade and live-birth outcome. Fertility and Sterility. 2011;95(8):2761–3.

    Article  PubMed  Google Scholar 

  7. Massip A, Mulnard J. Time-Lapse Cinematographic Analysis of Hatching of Normal and Frozen-Thawed Cow Blastocysts. Journal of Reproduction and Fertility 1980; 58 (2):475-&.

  8. Massip A, Mulnard J, Vanderzwalmen P, Hanzen C, Ectors F. The Behavior of Cow Blastocyst Invitro - Cinematographic and Morphometric Analysis. Journal of Anatomy 1982; 134 (MAR):399–405.

  9. Payne D, Flaherty SP, Barry MF, Matthews CD. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Human Reproduction. 1997;12(3):532–41.

    Article  CAS  PubMed  Google Scholar 

  10. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nature Biotechnology. 2010;28(10):1115–99.

    Article  CAS  PubMed  Google Scholar 

  11. Kirkegaard K, Hindkjaer JJ, Grondahl ML, Kesmodel US, Ingerslev HJ. A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator. Journal of Assisted Reproduction and Genetics. 2012;29(6):565–72.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Human Reproduction. 2011;26(10):2658–71.

    Article  PubMed  Google Scholar 

  13. Holm P, Shukri NN, Vajta G, Booth P, Bendixen C, Callesen H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology. 1998;50(8):1285–99.

    Article  CAS  PubMed  Google Scholar 

  14. Li R, Liu Y, Pedersen H, Kragh P, Callesen H. Development and quality of porcine parthenogenetically activated embryos after removal of zona pellucida. Theriogenology. 2013;80(1):58–64.

    Article  PubMed  Google Scholar 

  15. Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertility and Sterility. 2007;88:1150–7.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi M, Saka N, Takahashi H, Kanai Y, Schultz RM, Okano A. Assessment of DNA damage in individual hamster embryos by comet assay. Molecular Reproduction and Development. 1999;54(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  17. Nakahara T, Iwase A, Goto M, Harata T, Suzuki M, Ienaga M, et al. Evaluation of the safety of time-lapse observations for human embryos. Journal of Assisted Reproduction and Genetics. 2010;27(2–3):93–6.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wataha JC, Lockwood PE, Lewis JB, Rueggeberg FA, Messer RLW. Biological effects of blue light from dental curing units. Dental Materials. 2004;20(2):150–7.

    Article  PubMed  Google Scholar 

  19. Cruz M, Garrido N, Herrero J, Perez-Cano I, Munoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reproductive Biomedicine Online. 2012;25(4):371–81.

    Article  PubMed  Google Scholar 

  20. Li R, Li J, Liu Y, Kragh PM, Hyttel P, Schmidt M, et al. Optimal developmental stage for vitrification of parthenogenetically activated porcine embryos. Cryobiology. 2012;64(1):60–4.

  21. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reproductive Biomedicine Online. 2013;27(2):140–6.

    Article  PubMed  Google Scholar 

  22. Niemann H. Sensitivity of Pig Morulae to Dmso/Pvp Or Glycerol Treatment and Cooling to 10-Degrees-C. Theriogenology. 1985;23(1):213.

    Article  Google Scholar 

  23. Wilmut I. Low-Temperature Preservation of Mammalian Embryos. Journal of Reproduction and Fertility. 1972;31(3):513–4.

    Article  CAS  PubMed  Google Scholar 

  24. Kühl M. Optical microsensors for analysis of microbial communities. Methods in Enzymology. 2005;397:166–99.

    Article  PubMed  Google Scholar 

  25. Exposure to light during image acquisition in the EmbryoScope. http://www.fertilitech.com/Admin/Public/DWSDownload.aspx?File=%2FFiles%2FFiles%2Fdownloads%2FLight+exposure+in+EmbryoScope+v4.pdf. 2012. Ref Type: Online Source

  26. Yoshioka K, Suzuki C, Tanaka A, Anas IMK, Iwamura S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biology of Reproduction. 2002;66(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang JQ, Li XL, Peng YZ, Guo XR, Heng BC, Tong GQ. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reproductive Biomedicine Online. 2010;20(4):510–5.

    Article  PubMed  Google Scholar 

  28. Ottosen LDM, Hindkjaer J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. Journal of Assisted Reproduction and Genetics. 2007;24(2–3):99–103.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Anette M. Pedersen, Janne Adamsen, Klaus Villemoes and Ruth Kristensen for excellent technical assistance. Part of this work was supported by grants from the Danish National Advanced Technology Foundation and the Danish Council of Independent Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Li.

Additional information

Capsule Our results indicate that red light (625 nm, 0.34 W/m2) used in the time-lapse incubation system does not decrease the development and quality of blastocysts in both mouse zygotes and porcine PA embryos (both zona-intact and zona-free).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Pedersen, K.S., Liu, Y. et al. Effect of red light on the development and quality of mammalian embryos. J Assist Reprod Genet 31, 795–801 (2014). https://doi.org/10.1007/s10815-014-0247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0247-7

Keywords

Navigation