Zygote serine decreased uptake from the fertilization medium is associated with implantation and pregnancy

  • Einat Zivi
  • Dinorah Barash
  • Einat Aizenman
  • Dan Gibson
  • Yoel Shufaro
Embryo Biology



To identify an association between amino acids (AAs) metabolism and reproductive outcome.


Prospective collection, observational study, in patients undergoing fresh, double embryo transfer (ET), in a tertiary hospital referral IVF unit. Spent day 1 and day 3 media were collected. Concentrations of taurine, aspartic acid, proline, and serine in the medium were determined using a liquid-chromatography mass-spectrometer (LCMS/MS). Data was analyzed according to excretion versus uptake, and a cut-off value was calculated based on a receiver operating curve (ROC). Pregnancy rates were also calculated after stratification into subgroups in accordance with AA metabolism.


Seven out of 19 patients conceived (36.8 %). The ORs for pregnancy when the zygotes secreted aspartic acid, serine and proline above the cut-off value were 2.9, 5.67 and 5.21 (p < 0.05). When both transferred embryos were above the cut-off value of serine the PR's were 62.5 %, 12.5 % when both were below, and 33.3 % when one was above and the other below (p = 0.04). Similar results were obtained for proline; PR's were 66.7, 18.7 and 28.6 % respectively, but with a borderline statistical significance (p = 0.08). The same trend was observed in the case of aspartic acid but not near statistical significance. No differences in PRs were found in association with taurine turnover during fertilization or any of the studied AAs during the cleavage stage. There was no correlation between zygote or embryo AAs metabolism and embryo morphology.


Serine and possibly proline decreased uptake from the fertilization medium is associated with pregnancy and might be useful for embryo selection.


In vitro fertilization Zygote Amino acid metabolism Pregnancy 



This project was supported by Hadassah’s Young Clinician Grant (Institutional competitive grant).

Conflict of interest

The authors declare that no commercial, financial or other conflict of interest exists.

Supplementary material

10815_2014_231_Fig3_ESM.jpg (81 kb)
Supplementary Fig 1

Representative liquid chromatography—tandem mass spectrometry chromatogram of the studied amino acids (JPEG 80 kb)

10815_2014_231_Fig4_ESM.jpg (37 kb)
Supplementary Table 1

Gradient program. Solvent A is a water solution containing 0.1 % formic acid and 0.3 % HFBA. Solvent B is 0.1 % formic acid in methanol (JPEG 37 kb)

10815_2014_231_Fig5_ESM.jpg (52 kb)
Supplementary Table 2

MRM parameters for serine, proline, aspartic acid and taurine (JPEG 51 kb)


  1. 1.
    Ahlström A, Wikland M, Rogberg L, Barnett JS, Tucker M, Hardarson T. Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod BioMed Online. 2011;22(5):477–84.CrossRefGoogle Scholar
  2. 2.
    Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A. 1967;58(2):560–7.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Botros L, Sakkas D, Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol Hum Reprod. 2008;14(12):679–90. doi: 10.1093/molehr/gan066.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19(10):2319–24. doi: 10.1093/humrep/deh409.PubMedCrossRefGoogle Scholar
  5. 5.
    Conaghan J, Handyside AH, Winston RM, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil. 1993;99(1):87–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Conaghan J, Hardy K, Handyside AH, Winston RM, Leese HJ. Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J Assist Reprod Genet. 1993;10(1):21–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Cortezzi SS, Cabral EC, Trevisan MG, Ferreira CR, Setti AS, Braga DP, et al. Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction. 2013;145(5):453–62. doi: 10.1530/REP-12-0168.PubMedCrossRefGoogle Scholar
  8. 8.
    Dunn WB. Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol. 2008;5(1):011001. doi: 10.1088/1478–3975/5/1/011001.PubMedCrossRefGoogle Scholar
  9. 9.
    Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242(1):103–5. doi: 10.1002/jez.1402420115.PubMedCrossRefGoogle Scholar
  10. 10.
    Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26(8):1981–6. doi: 10.1093/humrep/der143.PubMedCrossRefGoogle Scholar
  12. 12.
    Gott AL, Hardy K, Winston RM, Leese HJ. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5(1):104–8.PubMedGoogle Scholar
  13. 13.
    Hardarson T, Ahlstrom A, Rogberg L, Botros L, Hillensjo T, Westlander G, et al. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod. 2012;27(1):89–96. doi: 10.1093/humrep/der373.PubMedCrossRefGoogle Scholar
  14. 14.
    Hardy K, Hooper MA, Handyside AH, Rutherford AJ, Winston RM, Leese HJ. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod. 1989;4(2):188–91.PubMedGoogle Scholar
  15. 15.
    Hemmings KE, Leese HJ, Picton HM. Amino acid turnover by bovine oocytes provides an index of oocyte developmental competence in vitro. Biol Reprod. 2012;86(5):165. doi: 10.1095/biolreprod.111.092585. 1–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Hemmings KE, Maruthini D, Vyjayanthi S, Hogg JE, Balen AH, Campbell BK, et al. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum Reprod. 2013;28(4):1031–44. doi: 10.1093/humrep/des458.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod. 2002;17(4):999–1005.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones GM, Trounson AO, Vella PJ, Thouas GA, Lolatgis N, Wood C. Glucose metabolism of human morula and blastocyst-stage embryos and its relationship to viability after transfer. Reprod Biomed Online. 2001;3(2):124–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil Steril. 2006;85(1):101–7. doi: 10.1016/j.fertnstert.2005.09.011.PubMedCrossRefGoogle Scholar
  20. 20.
    Leese HJ. Analysis of embryos by non-invasive methods. Hum Reprod. 1987;2(1):37–40.PubMedGoogle Scholar
  21. 21.
    Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays: Mol Cellular Dev Biol. 2002;24(9):845–9. doi: 10.1002/bies.10137.CrossRefGoogle Scholar
  22. 22.
    Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22(12):3047–50. doi: 10.1093/humrep/dem253.PubMedCrossRefGoogle Scholar
  23. 23.
    Marhuenda-Egea FC, Martinez-Sabater E, Gonsalvez-Alvarez R, Lledo B, Ten J, Bernabeu R. A crucial step in assisted reproduction technology: human embryo selection using metabolomic evaluation. Fertil Steril. 2010;94(2):772–4. doi: 10.1016/j.fertnstert.2009.10.013.PubMedCrossRefGoogle Scholar
  24. 24.
    Memili E, Peddinti D, Shack LA, Nanduri B, McCarthy F, Sagirkaya H, et al. Bovine germinal vesicle oocyte and cumulus cell proteomics. Reproduction. 2007;133(6):1107–20. doi: 10.1530/REP-06-0149.PubMedCrossRefGoogle Scholar
  25. 25.
    Milki AA, Hinckley MD, Gebhardt J, Dasig D, Westphal LM, Behr B. Accuracy of day 3 criteria for selecting the best embryos. Fertil Steril. 2002;77(6):1191–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Nadal-Desbarats L, Veau S, Blasco H, Emond P, Royere D, Andres CR, et al. Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection? MAGMA. 2013;26(2):193–202. doi: 10.1007/s10334–012–0331-x.PubMedCrossRefGoogle Scholar
  27. 27.
    Nagy ZP, Jones-Colon S, Roos P, Botros L, Greco E, Dasig J, et al. Metabolomic assessment of oocyte viability. Reprod Biomed Online. 2009;18(2):219–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Neuber E, Mahutte NG, Arici A, Sakkas D. Sequential embryo assessment outperforms investigator-driven morphological assessment at selecting a good quality blastocyst. Fertil Steril. 2006;85(3):794–6. doi: 10.1016/j.fertnstert.2005.08.064.PubMedCrossRefGoogle Scholar
  29. 29.
    Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, et al. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod. 2010;16(8):557–69. doi: 10.1093/molehr/gaq040.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Endocrinol: RB & E. 2009;7:40. doi: 10.1186/1477–7827–7–40.CrossRefGoogle Scholar
  31. 31.
    Rijnders PM, Jansen CA. The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in-vitro fertilization or intracytoplasmic sperm injection. Hum Reprod. 1998;13(1O):2869–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Rinaudo P, Shen S, Hua J, Qian S, Prabhu U, Garcia E. (1)H NMR based profiling of spent culture media cannot predict success of implantation for day 3 human embryos. J Assist Reprod Genet. 2012;29(12):1435–42. doi: 10.1007/s10815–012–9877–9.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90(1):77–83. doi: 10.1016/j.fertnstert.2007.11.058.PubMedCrossRefGoogle Scholar
  34. 34.
    Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88(5):1350–7. doi: 10.1016/j.fertnstert.2007.07.1390.PubMedCrossRefGoogle Scholar
  35. 35.
    Seli E, Botros L, Sakkas D, Burns DH. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2008;90(6):2183–9. doi: 10.1016/j.fertnstert.2008.07.1739.PubMedCrossRefGoogle Scholar
  36. 36.
    Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod. 2010;16(8):513–30. doi: 10.1093/molehr/gaq041.PubMedCrossRefGoogle Scholar
  37. 37.
    Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB, et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010;94(2):535–42. doi: 10.1016/j.fertnstert.2009.03.078.PubMedCrossRefGoogle Scholar
  38. 38.
    Stokes PJ, Hawkhead JA, Fawthrop RK, Picton HM, Sharma V, Leese HJ, et al. Metabolism of human embryos following cryopreservation: implications for the safety and selection of embryos for transfer in clinical IVF. Hum Reprod. 2007;22(3):829–35. doi: 10.1093/humrep/del447.PubMedCrossRefGoogle Scholar
  39. 39.
    Sturmey RG, Brison DR, Leese HJ. Symposium: innovative techniques in human embryo viability assessment. Assessing embryo viability by measurement of amino acid turnover. Reprod Biomed Online. 2008;17(4):486–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Sturmey RG, Hawkhead JA, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod. 2009;24(1):81–91. doi: 10.1093/humrep/den346.PubMedCrossRefGoogle Scholar
  41. 41.
    Tejera A, Herrero J, Viloria T, Romero JL, Gamiz P, Meseguer M. Time-dependent O2 consumption patterns determined optimal time ranges for selecting viable human embryos. Fertil Steril. 2012;98(4):849–57. doi: 10.1016/j.fertnstert.2012.06.040. e1-3.PubMedCrossRefGoogle Scholar
  42. 42.
    Turner K, Martin KL, Woodward BJ, Lenton EA, Leese HJ. Comparison of pyruvate uptake by embryos derived from conception and non-conception natural cycles. Hum Reprod. 1994;9(12):2362–6.PubMedGoogle Scholar
  43. 43.
    Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PG, et al. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod. 2008;23(7):1499–504. doi: 10.1093/humrep/den111.PubMedCrossRefGoogle Scholar
  44. 44.
    Vergouw CG, Kieslinger DC, Kostelijk EH, Botros LL, Schats R, Hompes PG, et al. Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum Reprod. 2012;27(8):2304–11. doi: 10.1093/humrep/des175.PubMedCrossRefGoogle Scholar
  45. 45.
    Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil Steril. 2012;97(5):1078–84. doi: 10.1016/j.fertnstert.2012.01.122. e1–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Whitten WK. Culture of tubal mouse ova. Nature. 1956;177(4498):96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Einat Zivi
    • 1
  • Dinorah Barash
    • 2
  • Einat Aizenman
    • 1
  • Dan Gibson
    • 2
  • Yoel Shufaro
    • 1
  1. 1.IVF Unit, Dept. of OB & GYNHadassah University HospitalJerusalemIsrael
  2. 2.The Institute for Drug Research, the School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations