Skip to main content

Advertisement

Log in

Melatonin modulates the expression of BCL-xl and improve the development of vitrified embryos obtained by IVF in mice

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Antioxidant and anti-apoptotic effects of melatonin on development of in vitro fertilization (IVF)/vitrified two-cell mouse embryos were evaluated in this study.

Methods

The IVF two-cell embryos were vitrified by cryotop, and were cultured in KSOM medium in different concentrations of melatonin (10−6, 10−9, 10−12 M) and without melatonin. The blastocyst cell number, apoptotic cells and glutathione (GSH) level were evaluated by differential, TUNEL and cell tracker blue staining, respectively. The expression of Bax and Bcl-xl genes was evaluated by qPCR. The expression of melatonin receptors (Mtnr1a and Mtnr1b) in mouse 2-cell embryos and blastocysts was evaluated by RT-PCR.

Results

Melatonin increased the rate of cleavage and blastulation at 10−12 M concentration (p < 0.05). The number of trophectoderm and inner cell mass showed a significant increase (p < 0.05) in 10−9 M melatonin. The 10−9 M and 10−12 M melatonin treatments significantly reduced (p < 0.05) the apoptotic index. The significant increase in the expression of Bcl-xl observed at 10−9 M concentration however, reduced expression of Bax was not statistically significant. The levels of GSH in 10−9 and 10−12 M groups were significantly improved relative to the control group (p < 0.05). The Mtnr1a was expressed in 2-cell embryos and blastocysts in all groups, but the expression of Mntr1b was not detected.

Conclusion

Melatonin may have a special role against oxidative stress in protection of IVF/vitrified embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Englert Y, Moens E, Vannin AS, Liesnard C, Emiliani S, Delbaere A, et al. Impaired ovarian stimulation during in vitro fertilization in women who are seropositive for hepatitis C virus and seronegative for human immunodeficiency virus. Fertil Steril. 2007;88(3):607–11. doi:10.1016/j.fertnstert.2006.11.177.

    Article  PubMed  Google Scholar 

  2. Lane M, Maybach JM, Gardner DK. Addition of ascorbate during cryopreservation stimulates subsequent embryo development. Hum Reprod. 2002;17(10):2686–93.

    Article  PubMed  CAS  Google Scholar 

  3. Tsang WH, Chow KL. Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. Biotechniques. 2009;46(7):550–2. doi:10.2144/000113125.

    Article  PubMed  CAS  Google Scholar 

  4. Azadbakht M, Valojerdi MR. Development of vitrified-warmed mouse embryos co-cultured with polarized or non-polarized uterine epithelial cells using sequential culture media. J Assist Reprod Genet. 2008;25(6):251–61. doi:10.1007/s10815-008-9231-4.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kuleshova LL, Lopata A. Vitrification can be more favorable than slow cooling. Fertil Steril. 2002;78(3):449–54.

    Article  PubMed  Google Scholar 

  6. Matsuzuka T, Sakamoto N, Ozawa M, Ushitani A, Hirabayashi M, Kanai Y. Alleviation of maternal hyperthermia-induced early embryonic death by administration of melatonin to mice. J Pineal Res. 2005;39(3):217–23. doi:10.1111/j.1600-079X.2005.00260.x.

    Article  PubMed  CAS  Google Scholar 

  7. Wang Z, Liu D, Wang J, Liu S, Gao M, Ling EA, et al. Cytoprotective effects of melatonin on astroglial cells subjected to palmitic acid treatment in vitro. J Pineal Res. 2012;52(2):253–64. doi:10.1111/j.1600-079X.2011.00952.x.

    Article  PubMed  CAS  Google Scholar 

  8. Juknat AA, Mendez Mdel V, Quaglino A, Fameli CI, Mena M, Kotler ML. Melatonin prevents hydrogen peroxide-induced Bax expression in cultured rat astrocytes. J Pineal Res. 2005;38(2):84–92. doi:10.1111/j.1600-079X.2004.00166.x.

    Article  PubMed  CAS  Google Scholar 

  9. Maity P, Bindu S, Dey S, Goyal M, Alam A, Pal C, et al. Melatonin reduces indomethacin-induced gastric mucosal cell apoptosis by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway of apoptosis. J Pineal Res. 2009;46(3):314–23. doi:10.1111/j.1600-079X.2009.00663.x.

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Falcone T, Attaran M, Goldberg JM, Agarwal A, Sharma RK. Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil Steril. 2002;78(6):1272–7.

    Article  PubMed  Google Scholar 

  11. Ozawa M, Nagai T, Fahrudin M, Karja NW, Kaneko H, Noguchi J, et al. Addition of glutathione or thioredoxin to culture medium reduces intracellular redox status of porcine IVM/IVF embryos, resulting in improved development to the blastocyst stage. Mol Reprod Dev. 2006;73(8):998–1007. doi:10.1002/mrd.20533.

    Article  PubMed  CAS  Google Scholar 

  12. Salmen JJ, Skufca F, Matt A, Gushansky G, Mason A, Gardiner CS. Role of glutathione in reproductive tract secretions on mouse preimplantation embryo development. Biol Reprod. 2005;73(2):308–14. doi:10.1095/biolreprod.104.038307.

    Article  PubMed  CAS  Google Scholar 

  13. Ali AA, Bilodeau JF, Sirard MA. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology. 2003;59(3–4):939–49.

    Article  PubMed  CAS  Google Scholar 

  14. Gao C, Han HB, Tian XZ, Tan DX, Wang L, Zhou GB, et al. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J Pineal Res. 2012;52(3):305–11. doi:10.1111/j.1600-079X.2011.00944.x.

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez-Osorio N, Kim IJ, Wang H, Kaya A, Memili E. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J Pineal Res. 2007;43(3):283–8. doi:10.1111/j.1600-079X.2007.00475.x.

    Article  PubMed  CAS  Google Scholar 

  16. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebesteny T, et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res. 2011;51(1):17–43. doi:10.1111/j.1600-079X.2011.00856.x.

    Article  PubMed  CAS  Google Scholar 

  17. Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res. 2012;52(2):217–27. doi:10.1111/j.1600-079X.2011.00931.x.

    Article  PubMed  CAS  Google Scholar 

  18. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res. 2008;44(3):280–7. doi:10.1111/j.1600-079X.2007.00524.x.

    Article  PubMed  CAS  Google Scholar 

  19. Yoo YM, Jung EM, Choi KC, Jeung EB. Effect of melatonin on mRNA expressions of transcription factors in murine embryonic stem cells. Brain Res. 2011;1385:1–7. doi:10.1016/j.brainres.2011.02.047.

    Article  PubMed  CAS  Google Scholar 

  20. Kucukakin B, Gogenur I, Reiter RJ, Rosenberg J. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin? J Surg Res. 2009;152(2):338–47. doi:10.1016/j.jss.2007.12.753.

    Article  PubMed  Google Scholar 

  21. Ishizuka B, Kuribayashi Y, Murai K, Amemiya A, Itoh MT. The effect of melatonin on in vitro fertilization and embryo development in mice. J Pineal Res. 2000;28(1):48–51.

    Article  PubMed  CAS  Google Scholar 

  22. Kang JT, Koo OJ, Kwon DK, Park HJ, Jang G, Kang SK, et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res. 2009;46(1):22–8. doi:10.1111/j.1600-079X.2008.00602.x.

    Article  PubMed  CAS  Google Scholar 

  23. Espino J, Ortiz A, Bejarano I, Lozano GM, Monllor F, Garcia JF, et al. Melatonin protects human spermatozoa from apoptosis via melatonin receptor- and extracellular signal-regulated kinase-mediated pathways. Fertil Steril. 2011;95(7):2290–6. doi:10.1016/j.fertnstert.2011.03.063.

    Article  PubMed  CAS  Google Scholar 

  24. Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev. 2010;62(3):343–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85(3):335–53. doi:10.1016/j.pneurobio.2008.04.001.

    Article  PubMed  CAS  Google Scholar 

  26. Tian XZ, Wen Q, Shi JM, Liang W, Zeng SM, Tian JH, et al. Effects of melatonin on in vitro development of mouse two-cell embryos cultured in HTF medium. Endocr Res. 2010;35(1):17–23. doi:10.3109/07435800903539607.

    Article  PubMed  CAS  Google Scholar 

  27. Abecia JA, Forcada F, Zuniga O. The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro. Vet Res Commun. 2002;26(2):151–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67(1):73–80. doi:10.1016/j.theriogenology.2006.09.014.

    Article  PubMed  CAS  Google Scholar 

  29. Salehi M, Kato Y, Tsunoda Y. Effect of melatonin treatment on developmental potential of somatic cell nuclear-transferred mouse oocytes in vitro. Zygote. 2013:1–5. doi:10.1017/S0967199413000336.

  30. Kaidi S, Bernard S, Lambert P, Massip A, Dessy F, Donnay I. Effect of conventional controlled-rate freezing and vitrification on morphology and metabolism of bovine blastocysts produced in vitro. Biol Reprod. 2001;65(4):1127–34.

    Article  PubMed  CAS  Google Scholar 

  31. Choi J, Park SM, Lee E, Kim JH, Jeong YI, Lee JY, et al. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol Reprod Dev. 2008;75(7):1127–35. doi:10.1002/mrd.20861.

    Article  PubMed  CAS  Google Scholar 

  32. Kere M, Siriboon C, Lo NW, Nguyen NT, Ju JC. Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J Reprod Dev. 2012;59(1):78–84.

    PubMed Central  PubMed  Google Scholar 

  33. Zuccotti M, Boiani M, Ponce R, Guizzardi S, Scandroglio R, Garagna S, et al. Mouse Xist expression begins at zygotic genome activation and is timed by a zygotic clock. Mol Reprod Dev. 2002;61(1):14–20. doi:10.1002/mrd.1126.

    Article  PubMed  CAS  Google Scholar 

  34. Graves-Herring JE, Boone WR. Blastocyst rate and live births from vitrification and slow-cooled two-cell mouse embryos. Fertil Steril. 2009;91(3):920–4. doi:10.1016/j.fertnstert.2007.12.045.

    Article  PubMed  Google Scholar 

  35. Hiraoka K, Kinutani M, Kinutani K. Case report: successful pregnancy after vitrification of a human blastocyst that had completely escaped from the zona pellucida on day 6. Hum Reprod. 2004;19(4):988–90. doi:10.1093/humrep/deh177.

    Article  PubMed  Google Scholar 

  36. Zhang J, Cui J, Ling X, Li X, Peng Y, Guo X, et al. Vitrification of mouse embryos at 2-cell, 4-cell and 8-cell stages by cryotop method. J Assist Reprod Genet. 2009;26(11–12):621–8. doi:10.1007/s10815-009-9370-2.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yan CL, Yang QE, Zhou GB, Hou YP, Zhao XM, Fan ZQ, et al. Open-pulled straw (OPS) vitrification of in vitro fertilised mouse embryos at various stages. Acta Vet Hung. 2008;56(2):245–53. doi:10.1556/AVet.56.2008.2.12.

    Article  PubMed  Google Scholar 

  38. Leon J, Acuna-Castroviejo D, Escames G, Tan DX, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005;38(1):1–9. doi:10.1111/j.1600-079X.2004.00181.x.

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y, Zhang L, Zhang H, Liu B, Wu Z, Zhao W, et al. Exogenous melatonin modulates apoptosis in the mouse brain induced by high-LET carbon ion irradiation. J Pineal Res. 2012;52(1):47–56. doi:10.1111/j.1600-079X.2011.00917.x.

    Article  PubMed  Google Scholar 

  40. Papis K, Poleszczuk O, Wenta-Muchalska E, Modlinski JA. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J Pineal Res. 2007;43(4):321–6. doi:10.1111/j.1600-079X.2007.00479.x.

    Article  PubMed  CAS  Google Scholar 

  41. Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–46.

    PubMed  CAS  Google Scholar 

  42. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  43. Tan DX, Poeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, et al. The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett. 1993;70(1–2):65–71.

    Article  PubMed  CAS  Google Scholar 

  44. Jang HY, Ji SJ, Kim YH, Lee HY, Shin JS, Cheong HT, et al. Antioxidative effects of astaxanthin against nitric oxide-induced oxidative stress on cell viability and gene expression in bovine oviduct epithelial cell and the developmental competence of bovine IVM/IVF embryos. Reprod Domest Anim. 2010;45(6):967–74. doi:10.1111/j.1439-0531.2009.01469.x.

    Article  PubMed  CAS  Google Scholar 

  45. Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT, Kang I, et al. Melatonin attenuates amyloid beta25-35-induced apoptosis in mouse microglial BV2 cells. Neurosci Lett. 2005;380(1–2):26–31. doi:10.1016/j.neulet.2005.01.003.

    Article  PubMed  CAS  Google Scholar 

  46. Wang J, Sauer MV. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag. 2006;2(4):355–64.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Lamont KT, Somers S, Lacerda L, Opie LH, Lecour S. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J Pineal Res. 2011;50(4):374–80. doi:10.1111/j.1600-079X.2010.00853.x.

    Article  PubMed  CAS  Google Scholar 

  48. Zushi S, Shinomura Y, Kiyohara T, Miyazaki Y, Kondo S, Sugimachi M, et al. STAT3 mediates the survival signal in oncogenic ras-transfected intestinal epithelial cells. Int J Cancer. 1998;78(3):326–30. doi:10.1002/(SICI)1097-0215(19981029)78:3<326::AID-IJC12>3.0.CO;2-4.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao W, Shi Z, Yuan F, Li G, Sun Y, Zhang Y, et al. Melatonin modulates the effects of diethylstilbestrol (DES) on the anterior pituitary of the female Wistar rat. Folia Histochem Cytobiol. 2010;48(2):278–83. doi:10.2478/v10042-010-0023-1.

    Article  PubMed  Google Scholar 

  50. El-Raey M, Geshi M, Somfai T, Kaneda M, Hirako M, Abdel-Ghaffar AE, et al. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev. 2011;78(4):250–62. doi:10.1002/mrd.21295.

    Article  PubMed  CAS  Google Scholar 

  51. Sampaio RV, Conceicao S, Miranda MS, Sampaio Lde F, Ohashi OM. MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro. Reprod Biol Endocrinol. 2012;10:103. doi:10.1186/1477-7827-10-103.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, et al. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol. 2003;23(3):1054–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Schuster C, Williams LM, Morris A, Morgan PJ, Barrett P. The human MT1 melatonin receptor stimulates cAMP production in the human neuroblastoma cell line SH-SY5Y cells via a calcium-calmodulin signal transduction pathway. J Neuroendocrinol. 2005;17(3):170–8. doi:10.1111/j.1365-2826.2005.01288.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was taken from the master’s thesis research project by Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Salehi.

Additional information

Capsule Exogenous melatonin has been found to affect BCL-xl expression and enhance in vitro developmental potenial of mice embryos after vitrification.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghani-Mohammadabadi, M., Salehi, M., Farifteh, F. et al. Melatonin modulates the expression of BCL-xl and improve the development of vitrified embryos obtained by IVF in mice. J Assist Reprod Genet 31, 453–461 (2014). https://doi.org/10.1007/s10815-014-0172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0172-9

Keywords

Navigation