Skip to main content
Log in

New insights into human pre-implantation metabolism in vivo and in vitro

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

The metabolism of pre-implantation embryos is far from being understood. In human embryos, the two major obstacles are the scarcity of material, for obvious ethical reasons, and complete absence of a relevant in vivo control model. Over-extrapolation from animal species to human systems adds to the complexity of the problem. Removal of some metabolites from media has been proposed, such as glucose and essential amino acids, on the basis of their pseudo “toxicity”. In contrast, addition of some compounds such as growth factors has been proposed in order to decrease apoptosis, which is a natural physiologic process. These suggestions reflect the absence of global knowledge, and in consequence mask reality. Some aspects of metabolism have been ignored, such as lipid metabolism. Others are seriously underestimated, such as oxidative stress and its relationship to imprinting/methylation, of paramount importance for genetic regulation and chromosomal stability. It has become increasingly obvious that more studies are essential, especially in view of the major extension of ART activities worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Whitten WK. Culture of tubal mouse ova. Nature. 1956;177:96.

    Article  PubMed  CAS  Google Scholar 

  2. Brinster RL. Studies on the development of mouse embryos in vitro I the effect of osmolarity and hydrogen ion concentration. J Exp Zool. 1965;158:49–57.

    Article  PubMed  CAS  Google Scholar 

  3. Brinster RL. Studies on the development of mouse embryos in vitro II. The effect of energy sources. J Exp Zool. 1965;158:59–68.

    Article  PubMed  CAS  Google Scholar 

  4. Brinster RL. Studies on the development of mouse embryos in vitro III the effect of fixed nitrogen source. J Exp Zool. 1965;158:69–77.

    Article  PubMed  CAS  Google Scholar 

  5. Brinster RL. In vitro culture of mammalian embryos. J Anim Sci. 1968;27 Suppl 1:1–14.

    PubMed  Google Scholar 

  6. Whittingham DG. Culture of mouse ova. J Reprod Fertil Suppl. 1971;14:7–21.

    PubMed  CAS  Google Scholar 

  7. Tervit HR, Whittingham D, Rowson LEA. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;20:493–7.

    Google Scholar 

  8. Ménézo Y. Milieu synthétique pour la survie et la maturation des gamètes et pour la culture de l’œuf fécondé. CR Acad Sci D Paris. 1976;282:1967–70.

    Google Scholar 

  9. Ao A, Erickson RP, Winston RM, Handyside AH. Transcription of paternal Y-linked genes in the human zygote as early as the pronucleate stage. Zygote. 1994;2:281–7.

    Article  PubMed  CAS  Google Scholar 

  10. Lopes S, Jurisicova A, Casper RF. Gamete-specific DNA fragmentation in unfertilized human oocytes after intracytoplasmic sperm injection. Hum Reprod. 1998;13:703–8.

    Article  PubMed  CAS  Google Scholar 

  11. Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18:357–65.

    Article  PubMed  Google Scholar 

  12. Betteridge KJ, Rieger D. Embryo transfer and related techniques in domestic animals, and their implications for human medicine. Hum Reprod. 1993;8:147–67.

    PubMed  CAS  Google Scholar 

  13. Ho Y, Doherty AS, Schultz RM. Mouse preimplantation embryo embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol Reprod Dev. 1994;38:131–41.

    Article  PubMed  CAS  Google Scholar 

  14. Jung T. Protein synthesis and degradation in non-cultured and in vitro cultured rabbit blastocysts. J Reprod Fertil. 1989;86:507–12.

    Article  PubMed  CAS  Google Scholar 

  15. Wrenzycki C, Herrmann D, Carnwath JW, Niemann H. Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol Reprod Dev. 1999;53:8–18.

    Article  PubMed  CAS  Google Scholar 

  16. Hiura H, Okae H, Miyauchi N, Sato F, Sato A, Van De Pette M, et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum Reprod. 2012;27:2541–8.

    Article  PubMed  CAS  Google Scholar 

  17. Naglee DL, Maurer RR, Foote RH. Effect of osmolarity on in vitro development of rabbit embryos in a chemically defined medium. Exp Cell Res. 1969;58:331–3.

    Article  PubMed  CAS  Google Scholar 

  18. Ménézo YJ, Hérubel F. Mouse and bovine models for human IVF. Reprod Biomed Online. 2002;4:170–5.

    Article  PubMed  Google Scholar 

  19. Liu Z, Foote RH. Sodium chloride, osmolytes, and osmolarity effects on blastocyst formation in bovine embryos produced by in vitro fertilization (IVF) and cultured in simple serum-free media. J Assist Reprod Genet. 1996;13:562–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kane MT. Bicarbonate requirements for culture of one-cell rabbit ova to blastocysts. Biol Reprod. 1975;12:552–5.

    Article  PubMed  CAS  Google Scholar 

  21. Gomes Sobrinho DB, Oliveira JB, Petersen CG, Mauri AL, Silva LF, Massaro FC, et al. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:143–54.

    Article  PubMed  Google Scholar 

  22. Guérin P, El Mouatassim S, Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175–89.

    Article  PubMed  Google Scholar 

  23. Martín-Romero FJ, Miguel-Lasobras EM, Domínguez-Arroyo JA, González-Carrera E, Alvarez IS. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod Biomed Online. 2008;17:652–6.

    Article  PubMed  Google Scholar 

  24. Wales RG, Brinster RL. The uptake of hexoses by mouse pre-implantation embryos in vitro. J Reprod Fertil. 1968;15:415–22.

    Article  PubMed  CAS  Google Scholar 

  25. Schini, Bavister BD. Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol Reprod. 1988;39:1183–92.

    Article  PubMed  CAS  Google Scholar 

  26. Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil. 1989;86:679–88.

    Article  PubMed  CAS  Google Scholar 

  27. Biggers JD, McGinnis LK. Evidence that glucose is not always an inhibitor of mouse preimplantation development in vitro. Hum Reprod. 2001;16:153–63.

    Article  PubMed  CAS  Google Scholar 

  28. Pampfer S. Apoptosis in rodent peri-implantation embryos: differential susceptibility of inner cell mass and trophectoderm cell lineages—a review. Placenta. 2000;21(suppltA):S3–10.

    Article  PubMed  Google Scholar 

  29. Jimenez A, Madrid-Bury N, Fernandez R, Pérez-Garnelo S, Moreira P, Pintado B, et al. Hyperglycemia-induced apoptosis affects sex ratio of bovine and murine preimplantation embryos. Mol Reprod Dev. 2003;65:180–7.

    Article  PubMed  CAS  Google Scholar 

  30. Cassuto G, Chavrier M, Menezo Y. Culture conditions and not prolonged culture time are responsible for monozygotic twinning in human in vitro fertilization. Fertil Steril. 2003;80:462–3.

    Article  PubMed  Google Scholar 

  31. Ménézo Y, Khatchadourian C. Implication of glucose 6 phosphate isomerase (EC 5.3.1.9) activity in blocking segmentation of the mouse ovum at the 2 cell stage in vitro. CR Acad Sci. 1990;310:297–301.

    Google Scholar 

  32. Ludwig TE, Lane M, Bavister BD. Differential effect of hexoses on hamster embryo development in culture. Biol Reprod. 2001;64:1366–74.

    Article  PubMed  CAS  Google Scholar 

  33. Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod. Dev. 2009; 76:844–53.

    Google Scholar 

  34. Dunning KR, Akison LK, Russell DL, Norman RJ, Robker RL. Increased beta-oxidation and improved oocyte developmental competence in response to L-carnitine during ovarian in vitro follicle development in mice. Biol Reprod. 2011;85:548–55.

    Article  PubMed  CAS  Google Scholar 

  35. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83:909–18.

    Article  PubMed  CAS  Google Scholar 

  36. Waterman RA, Wall RJ. Lipid interactions with in vitro development of mammalian zygotes. Gamete Res. 1988;21:243–54.

    Article  PubMed  CAS  Google Scholar 

  37. Hillman N, Flynn TJ. The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro. J Embryol Exp Morphol. 1980;56:157–68.

    PubMed  CAS  Google Scholar 

  38. Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73:1195–201.

    Article  PubMed  CAS  Google Scholar 

  39. Homa ST, Racowsky C, McGaughey RW. Lipid analysis of immature pig oocytes. J Reprod Fertil. 1986;77:425–34.

    Article  PubMed  CAS  Google Scholar 

  40. Flynn TJ, Hillman N. Lipid synthesis from [U14C]glucose in pre-implantation mouse embryos in culture. Biol Reprod. 1978;19:922–6.

    Article  PubMed  CAS  Google Scholar 

  41. Ménézo Y, Renard JP, Delobel B, Pageaux JF. Kinetic study of fatty acid composition of day 7 to day 14 cow embryos. Biol Reprod. 1982;26:787–90.

    Article  PubMed  Google Scholar 

  42. Montjean D, Entezami F, Lichtblau I, Belloc S, Gurgan T, Menezo Y. Carnitine content in the follicular fluid and expression of the enzymes involved in beta oxidation in oocytes and cumulus cells. J Assist Reprod Genet. 2012;29:1221–5.

    Article  PubMed  Google Scholar 

  43. Abdelrazik A, El-Damen H, Badrawi R, Sharma A. Agarwal Introduction of a single step medium from fertilization through blastocyst stage by supplementation of the culture media with L-Carnitine. ASRM meeting, Washington DC; 2007. p. 312.

  44. Casslén BG. Free amino acids in human uterine fluid. Possible role of high taurine concentration. J Reprod Med. 1987;32:181–4.

    PubMed  Google Scholar 

  45. Dawson KM, Baltz JM. Organic osmolytes and embryos: substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod. 1997;56:1550–8.

    Article  PubMed  CAS  Google Scholar 

  46. Baltz JM. Media composition: salts and osmolality. Methods Mol Biol. 2012;912:61–80.

    PubMed  CAS  Google Scholar 

  47. Khatchadourian C, Guillaud J, Menezo Y. Interactions in glycine and methionine uptake, conversion and incorporation into proteins in the preimplantation mouse embryo. Zygote. 1994;2:301–6.

    Article  PubMed  CAS  Google Scholar 

  48. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.

    Article  PubMed  CAS  Google Scholar 

  49. Guyader-Joly C, Khatchadourian C, Ménézo Y. Comparative glucose and fructose incorporation and conversion by in vitro produced bovine embryos. Zygote. 1996;4:85–91.

    Article  PubMed  CAS  Google Scholar 

  50. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19:2319–24.

    Article  PubMed  CAS  Google Scholar 

  51. Ménézo Y, Testart J, Perone D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil Steril. 1984;42:750–5.

    PubMed  Google Scholar 

  52. Tay JI, Rutherford AJ, Killick SR, Maguiness SD, Partridge RJ, Leese HJ. Human tubal fluid: production, nutrient composition and response to adrenergic agents. Hum Reprod. 1997;12:2451–6.

    Article  PubMed  CAS  Google Scholar 

  53. De Groot N, Hochberg A. Gene imprinting during placental and embryonic development. Mol Reprod Dev. 1993;36:390–406.

    Article  Google Scholar 

  54. Goshen R, Ben Rafael Z, Gonik B, Lustig O, Tannos V, de-Groot N, et al. The role of genomic imprinting in implantation. Fertil Steril. 1994;2:903–10.

    Google Scholar 

  55. Khosla S, Dean W, Reik W. Culture of pre-implantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Updat. 2001;7:419–27.

    Article  CAS  Google Scholar 

  56. Ménézo Y, Khatchadourian C, Gharrib A, Hamidi J, Sarda N. Regulation of sadenosyl methionine synthesis in the mouse embryo. Life Sci. 1989;44:1601–9.

    Article  PubMed  Google Scholar 

  57. Benkhalifa M, Montjean D, Cohen-Bacrie P, Ménézo Y. Imprinting: RNA expression for ho mocysteine recycling in the human oocyte. Fertil Steril. 2010;93:1585–90.

    Article  PubMed  CAS  Google Scholar 

  58. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet. 2004;74:599–609.

    Article  PubMed  CAS  Google Scholar 

  59. Wolff GL, Kodell RL, Moore SR, Cooney CE. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/mice. FASEB J. 1998;12:949–57.

    PubMed  CAS  Google Scholar 

  60. Xin Z, Tachibana M, Guggiari, et al. Role of histone methyltransferase G9a in CpG methylation of the Prader–Willi syndrome imprinting centre. J Biol Chem. 2003;278:14996–5000.

    Article  PubMed  CAS  Google Scholar 

  61. Hoffman M. Hypothesis: hyperhomocysteinemia is an indicator of oxidant stress. Med Hypotheses. 2011;77:1088–93.

    Article  PubMed  CAS  Google Scholar 

  62. Ménézo Y, Mares P, Cohen M, Brack M, Viville S, Elder K. Autism, imprinting and epigenetic disorders: a metabolic syndrome linked to anomalies in homocysteine recycling starting in early life?? J Assist Reprod Genet. 2011;28:1143–5.

    Article  PubMed  Google Scholar 

  63. Lu S, Hoestje SM, Choo E, Epner DE. Induction of caspase dependant and independant apoptosis in response to methionine restriction. Int J Oncol. 2003;22:415–20.

    PubMed  CAS  Google Scholar 

  64. Guérin P, Ménézo Y. Hypotaurine and taurine in gamete and embryo environments: de novo synthesis via the cysteine sulfinic acid pathway in oviduct cells. Zygote. 1995;3:333–43.

    Article  PubMed  Google Scholar 

  65. Dumoulin JC, van Wissen LC, Menheere PP, Michiels AH, Geraedts JP, Evers JL. Taurine acts as an osmolyte in human and mouse oocytes and embryos. Biol Reprod. 1997;56:739–44.

    Article  PubMed  CAS  Google Scholar 

  66. Gardner DK, Lane M. Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48:377–85.

    Article  PubMed  CAS  Google Scholar 

  67. Elhassan YM, Wu G, Leanez AC, et al. Amino acid concentrations in fluids from the bovine oviduct and uterus and in KSOM-based culture media. Theriogenology. 2001;55:1907–18.

    Article  PubMed  CAS  Google Scholar 

  68. Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18:3769–78.

    Article  PubMed  CAS  Google Scholar 

  69. Pike IL, Murdoch RN, Wales RG. The incorporation of carbon dioxide into the major classes of RNA during culture of the preimplantation mouse embryo. J Reprod Fertil. 1975;45:211–2.

    Article  PubMed  CAS  Google Scholar 

  70. Badouard C, Ménézo Y, Panteix G, Ravanat JL, Douki T, Cadet J, et al. Determination of new types of DNA lesions in human sperm. Zygote. 2008;16:9–13.

    Article  PubMed  CAS  Google Scholar 

  71. Zenzes MT, Puy LA, Bielecki R. Immunodetection of benzo[a]pyrene adducts in ovarian cells of women exposed to cigarette smoke. Mol Hum Reprod. 1998;4:159–65.

    Article  PubMed  CAS  Google Scholar 

  72. Wachsman JT. DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res. 1997;375:1–8.

    Article  PubMed  CAS  Google Scholar 

  73. Ménézo YJR, Russo G, Tosti E, El Mouatassim S, Benkhalifa M. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet. 2007;24:513–20.

    Article  PubMed  Google Scholar 

  74. Epstein CJ. Gene expression and macromolecular synthesis during pre-implantation embryonic development. Biol Reprod. 1975;12:82–105.

    Article  PubMed  CAS  Google Scholar 

  75. Olson SE, Seidel Jr GE. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol Reprod. 2000;62:248–52.

    Article  PubMed  CAS  Google Scholar 

  76. Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide. 2008;19:252–8.

    Article  PubMed  CAS  Google Scholar 

  77. Bavister BD, Leibfried ML, Lieberman G. Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol Reprod. 1983;28:235–47.

    Article  PubMed  CAS  Google Scholar 

  78. Tsai FC, Gardner DK. Nicotinamide, a component of complex culture media, inhibits mouse embryo development in vitro and reduces subsequent developmental potential after transfer. Fertil Steril. 1994;61:376–82.

    PubMed  CAS  Google Scholar 

  79. O’Neill C. Endogenous folic acid is essential for normal development of preimplantation embryos. Hum Reprod. 1998;13:1312–6.

    Article  PubMed  Google Scholar 

  80. Ménézo Y, Entezami F, Lichtblau I, Belloc S, Cohen M, Dale B. Oxidative stress and fertility: incorrect assumptions and ineffective solutions? Zygote. 2012;12:1–11.

    Article  Google Scholar 

  81. Caro CM, Trounson A. Successful fertilization, embryo development, and pregnancy in human in vitro fertilization (IVF) using a chemically defined culture medium containing no protein. J In Vitro Fert Embryo Transf. 1986;3:215–7.

    Article  PubMed  CAS  Google Scholar 

  82. Menezo Y, Khatchadourian C. Peptides bound to albumin. Life Sci. 1986;39:1751–3.

    Article  PubMed  CAS  Google Scholar 

  83. Croteau S, Menezo Y. Growth factors: from oocyte maturation to blastocyst. Contracept Fertil Sex. 1994;22:648–55.

    PubMed  CAS  Google Scholar 

  84. Richter KS. The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr Opin Obstet Gynecol. 2008;20:292–304.

    Article  PubMed  Google Scholar 

  85. Ménézo YJ, Servy E, Veiga A, Hazout A, Elder K. Culture systems: embryo co-culture. Methods Mol Biol. 2012;912:231–47.

    PubMed  Google Scholar 

  86. Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and the role of growth factors. Proc Natl Acad Sci USA. 1990;87:4756–60.

    Article  PubMed  CAS  Google Scholar 

  87. Gopichandran N, Leese HJ. The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reprod. 2006;131:269–67.

    Article  CAS  Google Scholar 

  88. O’Neill C. Evidence for the requirement of autocrine growth factors for development of mouse—preimplantation embryos in vitro. Biol Reprod. 1997;56:229–37.

    Article  PubMed  Google Scholar 

  89. Desai NN, Goldfarb JM. Growth factor/cytokine secretion by a permanent human endometrial cell line with embryotrophic properties. J Assist Reprod Genet. 1996;13:546–50.

    Article  PubMed  CAS  Google Scholar 

  90. Desai NN, Goldfarb J. Co-cultured human embryos may be subjected to widely different microenvironments: pattern of growth factor/cytokine release by Vero cells during the co-culture interval. Hum Reprod. 1998;13:1600–5.

    Article  PubMed  CAS  Google Scholar 

  91. Patrizio P, Sakkas D. From oocyte to baby: a clinical evaluation of the biological efficiency of in vitro fertilization. Fertil Steril. 2009;91:1061–6.

    Article  PubMed  Google Scholar 

  92. Menezo Y, Guerin P. Preimplantation embryo metabolism and embryo interaction with the in vitro environment. In: Elder K, Cohen J, editors. Human preimplantation Embryo evaluation and selection. London: Taylor-Francis; 2007. p. 191–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Ménézo.

Additional information

Capsule Knowledge of human embryo metabolism is complicated by the complete lack of an in vivo model. Metabolic variations between animal models and human systems are evident. We have attempted to add to current knowledge by interpreting information yielded via mRNA transcripts found in the oocyte. We have re-evaluated metabolism of lipids, glucose and amino acids, with a special focus on oxidative stress, imprinting and apoptosis, since certain physiological aspects have not previously been taken into account. More studies are essential in order to avoid introducing artifacts that bypass physiological processes and mask the biochemistry involved in real-time metabolism.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ménézo, Y., Lichtblau, I. & Elder, K. New insights into human pre-implantation metabolism in vivo and in vitro. J Assist Reprod Genet 30, 293–303 (2013). https://doi.org/10.1007/s10815-013-9953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-9953-9

Keywords

Navigation