Skip to main content
Log in

Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction

  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To highlight recent progress in understanding the pattern of follicular wave emergence of human menstrual cycle, providing a brief overview of the new options for human ovarian stimulation and oocyte retrieval by making full use of follicular physiological waves of the patients either with normal or abnormal ovarian reserve.

Methods

Literature review and editorial commentary.

Results

There has been increasing evidence to suggest that multiple (two or three) antral follicular waves are recruited during human menstrual cycle. The treatment regimens designed based on the theory of follicular waves, to promote increased success with assisted reproduction technology (ART) and fertility preservation have been reported. These new options for human ovarian stimulation and oocyte retrieval by making full use of follicular waves of the patients either with normal or abnormal ovarian reserve lead to new thinking about the standard protocols in ART and challenge the traditional theory that a single wave of antral follicles grows only during the follicular phase of the menstrual cycle.

Conclusions

The understanding of human ovarian folliculogenesis may have profound implications in ART and fertility preservation. Further studies are needed to evaluate the optimal regimens in ART based on the theory of follicular waves and to identify non-invasive markers for predicting the outcome and the potential utilities of follicles obtained from anovulatory follicular waves in ART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hackeloer BJ, Fleming R, Robinson HP, Adam AH, Coutts JRT. Correlation of ultrasonic and endocrinologic assessment of human follicular development. Amer J Obstet Gynecol. 1979;135:122–8.

    CAS  Google Scholar 

  2. Chikazawa K, Araki S, Tamada T. Morphological and endocrinological studies on follicular development during the human menstrual cycle. J Clin Endocrinol Metab. 1986;62:305–13.

    Article  PubMed  CAS  Google Scholar 

  3. Mihm M, Evans AC. Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reprod Dom Anim. 2008;43 Suppl 2:48–56.

    Article  Google Scholar 

  4. Andreotti RF, Thompson GH, Janowitz W, Shapiro AG, Zusmer NR. Endovaginal and transabdominal sonography of ovarian follicles. J Ultrasound Med. 1989;8:555–60.

    PubMed  CAS  Google Scholar 

  5. O’herlihy C. Monitoring ovarian follicular development with real-time ultrasound. Br J Obstet Gynaecol. 1980;87:613–8.

    Article  PubMed  Google Scholar 

  6. Schipper I, Hop WCJ, Fauser BCJM. The follicle-stimulating hormone (FSH) threshold/window concept examined by different interventions with exogenous FSH during the follicular phase of the normal menstrual cycle: duration, rather than magnitude, of FSH increase affects follicle develop ment. J Clin Endocrinol Metab. 1998;83:1292.

    Article  PubMed  CAS  Google Scholar 

  7. Pache T, Wladimiroff J, Dejong F, Hop W, Fauser B. Growth patterns of nondominant ovarian follicles during the normal menstrual cycle. Fertil Steril. 1990;54:638–42.

    PubMed  CAS  Google Scholar 

  8. Baerwald A, Adams G, Pierson R. Characteristics of ovarian follicular wave dynamics in women. Biol Reprod. 2003;69:1023–31.

    Article  PubMed  CAS  Google Scholar 

  9. Baerwald A, Adams G, Pierson R. A new model for ovarian follicular development during the human menstrual cycle. Fertil Steril. 2003;80:116–22.

    Article  PubMed  Google Scholar 

  10. Craig J, Orisaka M, Wang H, Orisaka S, Thompson W, Zhu C, et al. Gonadotropin and intra-ovarian signals regulating follicle development and atresia: the delicate balance between life and death. Front Biosci. 2007;12:3628–39.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23:699–708.

    Article  PubMed  Google Scholar 

  12. Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. Ann Endocrinol. 2010;71:132–43.

    Article  CAS  Google Scholar 

  13. Macklon NS, Fauser BCJ. Regulation of follicle development and novel approaches to ovarian stimulation for IVF. Hum Reprod Update. 2000;6:307–12.

    Article  CAS  Google Scholar 

  14. Maheshwari A, Gibreel A, Siristatidis CS, Bhattacharya S. Gonadotrophin-releasing hormone agonist protocols for pituitary suppression in assisted reproduction. Cochrane Database Syst Rev. 2011;10:CD006919.

    Google Scholar 

  15. Ginther OJ, Gastal EL, Gastal MO, Bergfelt DR, Baerwald AR, Pierson RA. Comparative study of the dynamics of follicular waves in mares and women. Biol Reprod. 2004;71:1195–201.

    Article  PubMed  CAS  Google Scholar 

  16. Adams GP, Jaiswal R, Singh J, Malhi P. Progress in understanding ovarian follicular dynamics in cattle. Theriogenology. 2008;69:72–80.

    Article  PubMed  CAS  Google Scholar 

  17. Adams GP, Singha J, Baerwald AR. Large animal models for the study of ovarian follicular dynamics in women. Theriogenology. 2012; doi:10.1016/j.theriogenology.2012.04.010

  18. Miro F, Aspinall LJ. The onset of the initial rise in follicle-stimulating hormone during the human menstrual cycle. Hum Reprod. 2005;20:96–100.

    Article  PubMed  CAS  Google Scholar 

  19. Adams GP, Pierson RA. Bovine model for study of ovarian follicular dynamics in humans. Theriogenology. 1995;43:113–20.

    Article  Google Scholar 

  20. Jaiswal RS, Singh J, Adams GP. Developmental pattern of small antral follicles in the bovine ovary. Biol Reprod. 2004;71:1244–51.

    Article  PubMed  CAS  Google Scholar 

  21. Jaiswal R, Singh J, Marshall L, Adams G. Repeatability of 2- and 3- wave patterns during the interovulatory interval in cattle. Theriogenology. 2009;72:81–90.

    Article  PubMed  CAS  Google Scholar 

  22. Mccorkell R, Woodbury M, Adams GP. Ovarian follicular and luteal dynamics in wapiti during the estrous cycle. Theriogenology. 2006;65:540–56.

    Article  PubMed  Google Scholar 

  23. Bishop CV, Sparman ML, Stanley JE, Bahar A, Zelinski MB, Stouffer RL. Evaluation of antral follicle growth in the macaque ovary during the menstrual cycle and controlled ovarian stimulation by high-resolution ultrasonography. Amer J Primatol. 2009;71:384–92.

    Article  Google Scholar 

  24. Malhi PS, Adams GP, Jaswant S. Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol Reprod. 2005;73:45–53.

    Article  PubMed  CAS  Google Scholar 

  25. Van Santbrink E, Hop W, Dessel TV, Jong FD, Fauser B. Decremental follicle-stimulating hormone and dominant follicle development during the normal menstrual cycle. Fertil Steril. 1995;64:37–43.

    PubMed  Google Scholar 

  26. Fanchin R, Salomon L, Castelo-Branco A, Olivennes F, Frydman N, Frydman R. Luteal estradiol pretreatment coordinates follicular growth during controlled ovarian hyper-stimulation with GnRH antagonists. Hum Reprod. 2003;18:2698–703.

    Article  PubMed  CAS  Google Scholar 

  27. Frattarelli JL, Hill MJ, McWilliams GD, Miller KA, Bergh PA, Scott Jr RT. A luteal estradiol protocol for expected poor-responders improves embryo number and quality. Fertil Steril. 2008;89:1118–22.

    Article  PubMed  CAS  Google Scholar 

  28. Chang EM, Han JE, Won HJ, Kim YS, Yoon TK, Lee WS. Effect of estrogen priming through luteal phase and stimulation phase in poor responders in in-vitro fertilization. J Assist Reprod Genet. 2012;29:225–30.

    Article  PubMed  Google Scholar 

  29. Ata B, Zeng X, Son WY, Holzer H, Tan SL. Follicular synchronization using transdermal estradiol patch and GnRH antagonists in the luteal phase; does it increase oocyte yield in poor responders to gonadotropin stimulation for in vitro fertilization (IVF)? A comparative study with microdose flare-up protocol. Gynecol Endocrinol. 2011;27:876–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kim CH, You RM, Kang HJ, Ahn JW, Jeon I, Lee JW, et al. GnRH antagonist multiple dose protocol with oral contraceptive pill pretreatment in poor responders undergoing IVF/ICSI. Clin Exp Reprod Med. 2011;38:228–33.

    Article  PubMed  Google Scholar 

  31. Fanchin R, Castelo-Branco A, Kadoch IJ, Hosny G, Bagirova M, Frydman R. Premenstrual administration of gonadotropin-releasing hormone antagonist coordinates early antral follicle sizes and sets up the basis for an innovative concept of controlled ovarian hyperstimulation. Fertil Steril. 2004;81:1554–9.

    Article  PubMed  CAS  Google Scholar 

  32. Elassar A, Mann JS, Engmann L, Nulsen J, Benadiva C. Luteal phase estradiol versus luteal phase estradiol and antagonist protocol for controlled ovarian stimulation before in vitro fertilization in poor responders. Fertil Steril. 2011;95:324–6.

    Article  PubMed  CAS  Google Scholar 

  33. Chang X, Wu J. Effects of luteal estradiol pre-treatment on the outcome of IVF in poor ovarian responders. Gynecol Endocrinol. 2012 Nov 30. [Epub ahead of print]

  34. Wang B, Sun HX, Liu JY, Hu YL, He FF. Appropriate prolongation of GnRH-a down-regulation improves the synchronism of follicular development. National J Androl Zhonghua Nan Ke Xue Za Zhi. 2011;17:1087–91.

    CAS  Google Scholar 

  35. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10:77–83.

    Article  PubMed  CAS  Google Scholar 

  36. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, et al. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143:1076–84.

    Article  PubMed  CAS  Google Scholar 

  37. Nilsson E, Rogers N, Skinner MK. Actions of anti-Mullerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition. Reproduction. 2007;134:209–21.

    Article  PubMed  CAS  Google Scholar 

  38. Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18:73–91.

    Article  PubMed  Google Scholar 

  39. Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG, Ernst E. Concentrations of AMH and Inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum Reprod. 2010;25:1282–7.

    Article  PubMed  CAS  Google Scholar 

  40. McNatty KP, Hillier SG, Boogaard AMVD, Trimbos-Kemper TC, Reichert LK, Hall EVV. Follicular development during the luteal phase of the human menstrual cycle. J Clin Endocrinol Metab. 1983;56:1022–31.

    Article  PubMed  CAS  Google Scholar 

  41. Moulin J, Marszalek A, Gayet V, Blanchet V, Streuli I, Lafay M, Pont JC, Chapron C, De Ziegler D. In donor-egg IVF, COH outcome is not affected when progestindelivering IUDs (mirena) or implants (implanon) are left in place. Abst 27th Annual Meeting of ESHRE. 2011; O-127.

  42. Weissman A, Barash A, Shapiro H, Casper RF. Ovarian hyperstimulation following the sole administration of agonistic analogues of gonadotrophin releasing hormone. Hum Reprod. 1996;13:3421–4.

    Article  Google Scholar 

  43. Vlahos NF, Choussein S, Economopoulos KP. Follicular development, acquisition of mature oocytes, and pregnancy after 2 weeks of leuprolide acetate administration during the midluteal phase. Fertil Steril. 2009;92:1170.e9–e11.

    Article  Google Scholar 

  44. Pinto E, Pinelo S, Osório M, Ferreira C, Serra H, Pires I, et al. Outcomes from ovarian hyperstimulation following the sole administration of gonadotrophin-releasing hormone agonist in the context of in vitro fertilization: report of two cases and review of the literature. Gynecol Endocrinol. 2012;28:545–8.

    Article  PubMed  CAS  Google Scholar 

  45. Cha KY, Koo JJ, Ko JJ, Choi DH, Han SY, Yoon TK. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril. 1991;55:109–13.

    PubMed  CAS  Google Scholar 

  46. Hwang JL, Lin YH, Tsai YL. Pregnancy after immature oocyte donation and intracytoplasmic sperm injection. Fertil Steril. 1997;68:1139–40.

    Article  PubMed  CAS  Google Scholar 

  47. Demirtas E, Elizur SE, Holzer H, Gidoni Y, Son WY, Chian RC, et al. Immature oocyte retrieval in the luteal phase to preserve fertility in cancer patients. Reprod Biomed Online. 2008;17:520–3.

    Article  PubMed  Google Scholar 

  48. Maman E, Meirow D, Brengauz M, Raanani H, Dor J, Hourvitz A. Luteal phase oocyte retrieval and in vitro maturation is an optional procedure for urgent fertility preservation. Fertil Steril. 2011;95:64–7.

    Article  PubMed  Google Scholar 

  49. Aerts JM, Bols PE. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: folliculogenesis and pre-antral follicle development. Reprod Dom Anim. 2010;45:171–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zi Yang.

Additional information

Funding for this work was provided by: Sun Yat-Sen University Clinical Research 5010 Program (Grant No. 2007-017); The science technology research project of Guangdong Province(2012A030400010); Key project of research of National Ministry of Health (WGCH [2010] 439).

Capsule

Progress in understanding human ovarian folliculogenesis leads to the new thinking of the options for human ovarian stimulation and oocyte retrieval of the patients either with normal or abnormal ovarian reserve, which may promote increased success with ART and fertility preservation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D.Z., Yang, W., Li, Y. et al. Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction. J Assist Reprod Genet 30, 213–219 (2013). https://doi.org/10.1007/s10815-013-9944-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-9944-x

Keywords

Navigation