Skip to main content

Advertisement

Log in

Expression of G protein estrogen receptor (GPER) on membrane of mouse oocytes during maturation

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To determine expression of G-protein estrogen receptor (GPER) in mouse oocyte membrane during maturation.

Methods

The expression of GPER from different maturation stages of oocytes, in vivo and in vitro matured oocytes as well as aging oocytes was examined by immune-fluorescence GPR30 antibody and the images were analyzed by laser scanning confocal microscope. Further confirmation was performed by Western blots for cell fractionation.

Results

Significant fluorescent signal was observed on the surface of mouse oocytes. The image expression was lower in germinal vesicle (GV) stage than mature metaphase-II (M-II) stage oocytes. There was high expression in in-vivo matured oocytes compared to in vitro matured oocytes. The highest expression was observed in aging oocytes compared with other oocytes.

Conclusions

The changes of expression of GPER on mouse oocytes plasma membrane confirm oocyte membrane maturation, suggesting that those changes of GPER may be related to the functional role of oocyte maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pang Y, Dong J, Thomas P. Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest. Endocrinology. 2008;149:3410–26.

    Article  PubMed  CAS  Google Scholar 

  2. Thomas P, Alyea R, Pang Y, Peyton C, Dong J, Berg AH. Conserved estrogen binding and signaling functions of the G protein-coupled estrogen receptor 1 (GPER) in mammals and fish. Steroids. 2010;75:595–602.

    Article  PubMed  CAS  Google Scholar 

  3. Qiu J, Ronnekleiv OK, Kelly MJ. Modulation of hypothalamic neuronal activity through a novel G-protein-coupled estrogen membrane receptor. Steroids. 2008;73:985–91.

    Article  PubMed  CAS  Google Scholar 

  4. Liu S, Le May C, Wong WP, Ward RD, Clegg DJ, Marcelli M, et al. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes. 2009;58:2292–302.

    Article  PubMed  CAS  Google Scholar 

  5. Rettew JA, McCall SHT, Marriott I. GPR30/GPER-1 mediates rapid decreases in TLR4 expression on murine macrophages. Mol Cell Endocrinol. 2010;328:87–92.

    Article  PubMed  CAS  Google Scholar 

  6. Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002;80:231–8.

    Article  PubMed  CAS  Google Scholar 

  7. Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab. 2009;20:477–82.

    Article  PubMed  CAS  Google Scholar 

  8. Filardo EJ, Quinn JA, Bland KI, Frackelton Jr AR. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol. 2000;14:1649–60.

    Article  PubMed  CAS  Google Scholar 

  9. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307:1625–30.

    Article  PubMed  CAS  Google Scholar 

  10. Thomas D, Kim HY, Hanley MR. Regulation of inositol trisphosphate-induced membrane currents in Xenopus oocytes by a Jurkat cell calcium influx factor. Biochem J. 1996;318(Pt 2):649–56.

    PubMed  CAS  Google Scholar 

  11. Thomas D, Kim HY, Morgan R, Hanley MR. Double-stranded-RNA-activated protein kinase (PKR) regulates Ca2+ stores in Xenopus oocytes. Biochem J. 1998;330(Pt 2):599–603.

    PubMed  CAS  Google Scholar 

  12. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–32.

    Article  PubMed  CAS  Google Scholar 

  13. Prossnitz ER, Arterburn JB, Sklar LA. GPR30: A G protein-coupled receptor for estrogen. Mol Cell Endocrinol. 2007;265–266:138–42.

    Article  PubMed  Google Scholar 

  14. Pace MC, Thomas P. Steroid-induced oocyte maturation in Atlantic croaker (Micropogonias undulatus) is dependent on activation of the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Biol Reprod. 2005;73:988–96.

    Article  PubMed  CAS  Google Scholar 

  15. Ge C, Yu M, Zhang C. G protein-coupled receptor 30 mediates estrogen-induced proliferation of primordial germ cells via EGFR/Akt/beta-catenin signaling pathway. Endocrinology. 2012;153:3504–16.

    Article  PubMed  CAS  Google Scholar 

  16. Chian RC, Buckett WM, Tan SL. In-vitro maturation of human oocytes. Reprod Biomed Online. 2004;8:148–66.

    Article  PubMed  Google Scholar 

  17. Peyton C, Thomas P. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio). Biol Reprod. 2011;85:42–50.

    Article  PubMed  CAS  Google Scholar 

  18. Quinn PJ, Takahashi H, Hatta I. Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Biophys J. 1995;68:1374–82.

    Article  PubMed  CAS  Google Scholar 

  19. Nagahama Y, Yamashita M. Regulation of oocyte maturation in fish. Dev Growth Differ. 2008;50 Suppl 1:S195–219.

    Article  PubMed  CAS  Google Scholar 

  20. Mishra A, Joy KP. Involvement of mitogen-activated protein kinase in 2-hydroxyestradiol-17beta-induced oocyte maturation in the catfish Heteropneustes fossilis and a note on possible interaction with protein phosphatases. Gen Comp Endocrinol. 2006;147:329–35.

    Article  PubMed  CAS  Google Scholar 

  21. Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biol Reprod. 2004;70:535–47.

    Article  PubMed  CAS  Google Scholar 

  22. Gallo CJ, Hand AR, Jones TL, Jaffe LA. Stimulation of Xenopus oocyte maturation by inhibition of the G-protein alpha S subunit, a component of the plasma membrane and yolk platelet membranes. J Cell Biol. 1995;130:275–84.

    Article  PubMed  CAS  Google Scholar 

  23. Moody WJ, Lansman JB. Developmental regulation of Ca2+ and K+ currents during hormone-induced maturation of starfish oocytes. Proc Natl Acad Sci U S A. 1983;80:3096–100.

    Article  PubMed  CAS  Google Scholar 

  24. Tesarik J, Sousa M. Comparison of Ca2+ responses in human oocytes fertilized by subzonal insemination and by intracytoplasmic sperm injection. Fertil Steril. 1994;62:1197–204.

    PubMed  CAS  Google Scholar 

  25. Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J, Alfandari D, et al. Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway. Development. 2006;133:4355–65.

    Article  PubMed  CAS  Google Scholar 

  26. Toranzo GS, Buhler MC, Buhler MI. Participation of IP3R, RyR and L-type Ca2+ channel in the nuclear maturation of Rhinella arenarum oocytes. Zygote 2012:1–14.

  27. Tosti E. Calcium ion currents mediating oocyte maturation events. Reprod Biol Endocrinol. 2006;4:26.

    Article  PubMed  Google Scholar 

  28. Carroll J, Jones KT, Whittingham DG. Ca2+ release and the development of Ca2+ release mechanisms during oocyte maturation: a prelude to fertilization. Rev Reprod. 1996;1:137–43.

    Article  PubMed  CAS  Google Scholar 

  29. Filardo EJ, Quinn JA, Frackelton Jr AR, Bland KI. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol. 2002;16:70–84.

    Article  PubMed  CAS  Google Scholar 

  30. Kostellow AB, Ziegler D, Morrill GA. Regulation of Ca2+ and cyclic AMP during the first meiotic division in amphibian oocytes by progesterone. J Cyclic Nucleotide Res. 1980;6:347–58.

    PubMed  CAS  Google Scholar 

  31. Silvestre F, Boni R, Fissore RA, Tosti E. Ca2+ signaling during maturation of cumulus-oocyte complex in mammals. Mol Reprod Dev. 2011;78:744–56.

    Article  PubMed  CAS  Google Scholar 

  32. Buckett WM, Chian RC, Holzer H, Dean N, Usher R, Tan SL. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet Gynecol. 2007;110:885–91.

    Article  PubMed  Google Scholar 

  33. Huang JY, Chen HY, Park JY, Tan SL, Chian RC. Comparison of spindle and chromosome configuration in in vitro- and in vivo-matured mouse oocytes after vitrification. Fertil Steril. 2008;90:1424–32.

    Article  PubMed  Google Scholar 

  34. Son WY, Chung JT, Demirtas E, Holzer H, Sylvestre C, Buckett W, et al. Comparison of in-vitro maturation cycles with and without in-vivo matured oocytes retrieved. Reprod Biomed Online. 2008;17:59–67.

    Article  PubMed  Google Scholar 

  35. Cao YX, Chian RC. Fertility preservation with immature and in vitro matured oocytes. Semin Reprod Med. 2009;27:456–64.

    Article  PubMed  Google Scholar 

  36. Kim DH, Ko DS, Lee HC, Lee HJ, Park WI, Kim SS, et al. Comparison of maturation, fertilization, development, and gene expression of mouse oocytes grown in vitro and in vivo. J Assist Reprod Genet. 2004;21:233–40.

    Article  PubMed  Google Scholar 

  37. Mehlmann LM, Kline D. Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol trisphosphate is enhanced after meiotic maturation. Biol Reprod. 1994;51:1088–98.

    Article  PubMed  CAS  Google Scholar 

  38. Kline D, Kline JT. Thapsigargin activates a calcium influx pathway in the unfertilized mouse egg and suppresses repetitive calcium transients in the fertilized egg. J Biol Chem. 1992;267:17624–30.

    PubMed  CAS  Google Scholar 

  39. Whitaker MJ, Swann K. Lighting the fuse at fertilization. Development. 1993;117:1–12.

    CAS  Google Scholar 

  40. Herbert M, Gillespie JI, Murdoch AP. Development of calcium signalling mechanisms during maturation of human oocytes. Mol Hum Reprod. 1997;3:965–73.

    Article  PubMed  CAS  Google Scholar 

  41. Ma SF, Liu XY, Miao DQ, Han ZB, Zhang X, Miao YL, et al. Parthenogenetic activation of mouse oocytes by strontium chloride: a search for the best conditions. Theriogenology. 2005;64:1142–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by MUHC Reproductive Center and a grant from the China Natural Science Foundation (81270746) to RCC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Chun Li or Ri-Cheng Chian.

Additional information

Capsule

The changes of expression of GPER on mouse oocytes plasma membrane confirm “oocyte membrane maturation”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YR., Ren, CE., Zhang, Q. et al. Expression of G protein estrogen receptor (GPER) on membrane of mouse oocytes during maturation. J Assist Reprod Genet 30, 227–232 (2013). https://doi.org/10.1007/s10815-013-9942-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-9942-z

Keywords

Navigation