Skip to main content
Log in

Oocyte maturation and in vitro hormone production in small antral follicles (SAFs) isolated from rhesus monkeys

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The small antral follicles (SAFs) from the ovarian medulla can be a potential source of oocytes for infertility patients, but little is known about their ability to yield mature oocytes. This study evaluated the response of these SAFs to a stimulatory bolus of human corionic gonadotropin (hCG) in vitro.

Methods

Oocyte nuclear maturation and hormone production (estradiol [E2], progesterone [P4]), antimullerian hormone [AMH]) by individual intact SAFs (n = 91; >0.5 mm; n = 5 monkeys) was evaluated after 34 h of culture in the absence (control) or presence of hCG.

Results

Of the total cohort (n = 91), 49 % of SAFs contained degenerating oocytes. The percentage of healthy oocytes able to reinitiate meiosis to the metaphase I (MI) and MII was greater (p < 0.05) after hCG compared to controls. E2, P4 and AMH levels were higher (p < 0.05) in SAF cultures containing germinal vesicle (GV) oocytes compared to those with MII oocytes regardless of hCG exposure. SAF with MI oocytes produced more E2, but less (p < 0.05) P4 and AMH compared to SAFs containing GV oocytes (p < 0.05). Follicles ≥1 mm produced more (p < 0.05) E2, whereas follicle diameter did not correlate with P4 or AMH levels. Only P4 increased (p < 0.05) in response to hCG, regardless of follicle size or oocyte maturity. SAFs containing degenerating oocytes produced similar levels of E2, P4 and AMH compared to SAFs containing healthy oocytes.

Conclusions

These data indicate, for the first time, that oocytes within primate SAFs can reinitiate meiosis in vitro in the absence of hCG, but nuclear maturation is enhanced in SAFs cultured with hCG. Oocyte nuclear maturation within SAFs in is associated with decreased E2, P4 and AMH levels. Furthermore, hormone content within the culture media does not necessarily reflect oocyte quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.

    Article  PubMed  CAS  Google Scholar 

  2. Anckaert E, Smitz J, Schiettecatte J, Klein BM, Arce JC. The value of anti-Mullerian hormone measurement in the long GnRH agonist protocol: association with ovarian response and gonadotrophin-dose adjustments. Hum Reprod. 2012;27(6):1829–39.

    Article  PubMed  CAS  Google Scholar 

  3. Combelles CM, Carabatsos MJ, Kumar TR, Matzuk MM, Albertini DF. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol Reprod Dev. 2004;69(3):347–55.

    Article  PubMed  CAS  Google Scholar 

  4. Comizzoli P, Pukazhenthi BS, Wildt DE. The competence of germinal vesicle oocytes is unrelated to nuclear chromatin configuration and strictly depends on cytoplasmic quantity and quality in the cat model. Hum Reprod. 2011;26(8):2165–77.

    Article  PubMed  CAS  Google Scholar 

  5. Cortvrindt RG, Hu Y, Liu J, Smitz JE. Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertil Steril. 1998;70(6):1114–25.

    Article  PubMed  CAS  Google Scholar 

  6. dela Pena EC, Takahashi Y, Katagiri S, Atabay EC, Nagano M. Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction. 2002;123(4):593–600.

    Article  CAS  Google Scholar 

  7. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–10.

    Article  PubMed  CAS  Google Scholar 

  8. Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med. 2011;43(6):437–50.

    Article  PubMed  Google Scholar 

  9. Duffy DM, Stouffer RL. Follicular administration of a cyclooxygenase inhibitor can prevent oocyte release without alteration of normal luteal function in rhesus monkeys. Hum Reprod. 2002;17(11):2825–31.

    Article  PubMed  CAS  Google Scholar 

  10. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.

    Article  PubMed  CAS  Google Scholar 

  11. Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197–207.

    Article  PubMed  CAS  Google Scholar 

  12. Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod. 1989;41(2):268–76.

    Article  PubMed  CAS  Google Scholar 

  13. Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev. 1994;15(6):707–24.

    PubMed  CAS  Google Scholar 

  14. Isachenko V, Lapidus I, Isachenko E, Krivokharchenko A, Kreienberg R, Woriedh M, et al. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction. 2009;138(2):319–27.

    Article  PubMed  CAS  Google Scholar 

  15. Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360(9):902–11.

    Article  PubMed  CAS  Google Scholar 

  16. Koering MJ, Baehler EA, Goodman AL, Hodgen GD. Developing morphological asymmetry of ovarian follicular maturation in monkeys. Biol Reprod. 1982;27(4):989–97.

    Article  PubMed  CAS  Google Scholar 

  17. Lin P, Rui R. Effects of follicular size and FSH on granulosa cell apoptosis and atresia in porcine antral follicles. Mol Reprod Dev. 2010;77(8):670–8.

    Article  PubMed  CAS  Google Scholar 

  18. Liu J, Van der Elst J, Van den Broecke R, Dhont M. Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol Reprod. 2001;64(1):171–8.

    Article  PubMed  CAS  Google Scholar 

  19. McNatty KP, Hillier SG, van den Boogaard AM, Trimbos-Kemper TC, Reichert Jr LE, van Hall EV. Follicular development during the luteal phase of the human menstrual cycle. J Clin Endocrinol Metab. 1983;56(5):1022–31.

    Article  PubMed  CAS  Google Scholar 

  20. Meirow D, Ben Yehuda D, Prus D, Poliack A, Schenker JG, Rachmilewitz EA, et al. Ovarian tissue banking in patients with Hodgkin’s disease: is it safe? Fertil Steril. 1998;69(6):996–8.

    Article  PubMed  CAS  Google Scholar 

  21. Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353(3):318–21.

    Article  PubMed  CAS  Google Scholar 

  22. Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, et al. Anti-Mullerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96(5):1246–1251.

    Google Scholar 

  23. Peluffo MC, Barrett SL, Stouffer RL, Hennebold JD, Zelinski MB. Cumulus-oocyte complexes from small antral follicles during the early follicular phase of menstrual cycles in rhesus monkeys yield oocytes that reinitiate meiosis and fertilize in vitro. Biol Reprod. 2010;83(4):525–32.

    Article  PubMed  CAS  Google Scholar 

  24. Peluffo MC, Ting AY, Zamah AM, Conti M, Stouffer RL, Zelinski MB, et al. (2012) Amphiregulin promotes the maturation of oocytes isolated from the small antral follicles of the rhesus macaque. Hum Reprod.

  25. Shaw J, Trounson A. Oncological implications in the replacement of ovarian tissue. Hum Reprod. 1997;12(3):403–5.

    Article  PubMed  CAS  Google Scholar 

  26. Sirard MA. Follicle environment and quality of in vitro matured oocytes. J Assist Reprod Genet. 2011;28(6):483–8.

    Article  PubMed  Google Scholar 

  27. Songsasen N, Woodruff TK, Wildt DE. In vitro growth and steroidogenesis of dog follicles are influenced by the physical and hormonal microenvironment. Reproduction. 2011;142(1):113–22.

    Article  PubMed  CAS  Google Scholar 

  28. Spears N, Boland NI, Murray AA, Gosden RG. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod. 1994;9(3):527–32.

    PubMed  CAS  Google Scholar 

  29. Ting AY, Yeoman RR, Lawson MS, Zelinski MB. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum Reprod. 2011;26(9):2461–72.

    Article  PubMed  Google Scholar 

  30. West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod. 2009;80(3):432–9.

    Article  PubMed  CAS  Google Scholar 

  31. Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S. Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J Clin Endocrinol Metab. 1998;83(11):3984–91.

    Article  PubMed  CAS  Google Scholar 

  32. Wolf DP, Thomson JA, Zelinski-Wooten MB, Stouffer RL. In vitro fertilization-embryo transfer in nonhuman primates: the technique and its applications. Mol Reprod Dev. 1990;27(3):261–80.

    Article  PubMed  CAS  Google Scholar 

  33. Xu J, Lawson MS, Yeoman RR, Pau KY, Barrett SL, Zelinski MB, et al. Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum Reprod. 2011;26(5):1061–72.

    Article  PubMed  CAS  Google Scholar 

  34. Xu J, Yeoman RR, Lawson MS, Stouffer RL, Zelinski MB (2009) Dose-dependent effects of gonadotropin, oxygen, and fetuin on macaque follicle survival, growth, and maturation during encapsulated three-dimensional culture. Paper presented at the 42nd Annual Meeting of the Society for the Study of Reproduction, Pittsburgh, Pennsylvania.

  35. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24(10):2531–40.

    Article  PubMed  CAS  Google Scholar 

  36. Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009;81(3):587–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the expert contributions of the animal care staff and surgical unit of the Division of Animal Resources, and the technical support of the ART core and the Endocrine Services and Technology Laboratory at ONPRC.

Supported by Oncofertility Consortium NIH 1 UL1 RR024926 (R01-HD058294, PL1-EB008542), the Eunice Kennedy Shriver NICHD Specialized Cooperative Centers Program in Reproduction and Infertility Research (U54 HD18185), the Eunice Kennedy Shriver NICHD Contraceptive Development and Research Center (U54 HD55744), NCRR-RR000163, NIH R01 HD052909 (MC) and a Lalor Foundation Postdoctoral Basic Research Fellowship (MCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary B. Zelinski.

Additional information

Capsule

Oocyte nuclear maturation within primate SAFs is enhanced in the presence of hCG, although hormone content in the culture media does not necessarily reflect oocyte quality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peluffo, M.C., Hennebold, J.D., Stouffer, R.L. et al. Oocyte maturation and in vitro hormone production in small antral follicles (SAFs) isolated from rhesus monkeys. J Assist Reprod Genet 30, 353–359 (2013). https://doi.org/10.1007/s10815-013-9937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-9937-9

Keywords

Navigation