Skip to main content

Advertisement

Log in

Gene expression profiling of granulosa cells from PCOS patients following varying doses of human chorionic gonadotropin

  • Gonadal Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Human chorionic gonadotrophin (hCG) has been used to induce ovulation and oocyte maturation. Although the most common dose of hCG used in IVF is 10,000 IU, there are reports that suggest 5,000 IU is sufficient to yield similar results. The objective of this study is to evaluate the dose dependent differences in gene expression of granulosa cells following various doses of hCG treatment.

Methods

Patients with polycystic ovarian syndrome (PCOS) were stimulated for IVF treatment. The hCG injection was either withheld or given at 5,000 or 10,000 IU. Granulosa cells from the follicular fluids have been collected for RNA isolation and analyzed using Affymetrix genechip arrays.

Results

Unsupervised hierarchical clustering based on whole gene expression revealed two distinct groups of patients in this experiment. All untreated patients were clustered together whereas hCG-treated patients separated to a different group regardless of the dose. A large number of the transcripts were similarly up- or down-regulated across both hCG doses (2229 and 1945 transcripts, respectively). However, we observed dose-dependent statistically significant differences in gene expression in only 15 transcripts.

Conclusions

Although hCG injection caused a major change in the gene expression profile of granulosa cells, 10,000 IU hCG resulted in minimal changes in the gene expression profiles of granulosa cells as compared with 5,000 IU. Thus, based on our results, we suggest the use of 10,000 IU hCG should be reconsidered in PCOS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdalla HI, Ah-Moye M, Brinsden P, Howe DL, Okonofua F, Craft I. The effect of the dose of human chorionic gonadotropin and the type of gonadotropin stimulation on oocyte recovery rates in an in vitro fertilization program. Fertil Steril. 1987;48:958–63.

    PubMed  CAS  Google Scholar 

  2. Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod. 2010;16:531–8.

    Article  PubMed  CAS  Google Scholar 

  3. Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14:711–9.

    Article  PubMed  CAS  Google Scholar 

  4. Barash Y, Dehan E, Krupsky M, Franklin W, Geraci M, Friedman N, et al. Comparative analysis of algorithms for signal quantitation from oligonucleotide microarrays. Bioinformatics. 2004;20:839–46.

    Article  PubMed  CAS  Google Scholar 

  5. Ben-Ami I, Komsky A, Bern O, Kasterstein E, Komarovsky D, Ron-El R. In vitro maturation of human germinal vesicle-stage oocytes: role of epidermal growth factor-like growth factors in the culture medium. Hum Reprod. 2011;26:76–81.

    Article  PubMed  CAS  Google Scholar 

  6. Brannian J, Eyster K, Mueller BA, Bietz MG, Hansen K. Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols. Reprod Biol Endocrinol. 2010;8:25.

    Article  PubMed  Google Scholar 

  7. Canipari R. Oocyte-granulosa cell interactions. Hum Reprod Update. 2000;6:279–89.

    Article  PubMed  CAS  Google Scholar 

  8. Carletti MZ, Christenson LK. Rapid effects of LH on gene expression in the mural granulosa cells of mouse periovulatory follicles. Reproduction. 2009;137:843–55.

    Article  PubMed  CAS  Google Scholar 

  9. Catteau-Jonard S, Jamin SP, Leclerc A, Gonzalès J, Dewailly D, di Clemente N. Anti-Mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:4456–61.

    Article  PubMed  CAS  Google Scholar 

  10. Chin KV, Seifer DB, Feng B, Lin Y, Shih WC. DNA microarray analysis of the expression profiles of luteinized granulosa cells as a function of ovarian reserve. Fertil Steril. 2002;77:1214–8.

    Article  PubMed  Google Scholar 

  11. Duggavathi R, Murphy BD. Ovulation signals. Science. 2009;324:890–1.

    Article  PubMed  CAS  Google Scholar 

  12. Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22:3069–77.

    Article  PubMed  CAS  Google Scholar 

  13. Gilbert I, Robert C, Dieleman SJ, Blondin P, Sirard MA. Transcriptional effect of the luteinizing hormone surge in bovine granulosa cells during the peri-ovulation period. Reproduction. 2011;141:193–205.

    Google Scholar 

  14. Grøndahl ML, Borup R, Lee YB, Myrhøj V, Meinertz H, Sørensen S. Differences in gene expression of granulosa cells from women undergoing controlled ovarian hyperstimulation with either recombinant follicle-stimulating hormone or highly purified human menopausal gonadotropin. Fertil Steril. 2009;91:1820–30.

    Article  PubMed  Google Scholar 

  15. Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.

    Article  PubMed  CAS  Google Scholar 

  16. Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. 2003;4:R70.

    Article  PubMed  Google Scholar 

  17. Inan MS, Al-Hassan S, Ozand P, Coskun S. Transcriptional profiling of granulosa cells from a patient with recurrent empty follicle syndrome. Reprod Biomed Online. 2006;13:481–91.

    Article  PubMed  CAS  Google Scholar 

  18. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31:e15.

    Article  PubMed  Google Scholar 

  19. Jansen E, Laven JS, Dommerholt HB, Polman J, van Rijt C, van den Hurk C, et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol. 2004;18:3050–63.

    Article  PubMed  CAS  Google Scholar 

  20. Jiang JY, Xiong H, Cao M, Xia X, Sirard MA, Tsang BK. Mural granulosa cell gene expression associated with oocyte developmental competence. J Ovarian Res. 2010;3:6.

    Article  PubMed  Google Scholar 

  21. Kenigsberg S, Bentov Y, Chalifa-Caspi V, Potashnik G, Ofir R, Birk OS. Gene expression microarray profiles of cumulus cells in lean and overweight-obese polycystic ovary syndrome patients. Mol Hum Reprod. 2009;15:89–103.

    Article  PubMed  CAS  Google Scholar 

  22. Kõks S, Velthut A, Sarapik A, Altmäe S, Reinmaa E, Schalkwyk LC, et al. The differential transcriptome and ontology profiles of floating and cumulus granulosa cells in stimulated human antral follicles. Mol Hum Reprod. 2010;16:229–40.

    Article  PubMed  Google Scholar 

  23. Kolibianakis EM, Papanikolaou EG, Tournaye H, Camus M, Van Steirteghem AC, Devroey P. Triggering final oocyte maturation using different doses of human chorionic gonadotropin: a randomized pilot study in patients with polycystic ovary syndrome treated with gonadotropin-releasing hormone antagonists and recombinant follicle-stimulating hormone. Fertil Steril. 2007;88:1382–8.

    Article  PubMed  CAS  Google Scholar 

  24. LaPolt PS, Tilly JL, Aihara T, Nishimori K, Hsueh AJ. Gonadotropin-induced up- and down-regulation of ovarian follicle-stimulating hormone (FSH) receptor gene expression in immature rats: effects of pregnant mare’s serum gonadotropin, human chorionic gonadotropin, and recombinant FSH. Endocrinology. 1992;130:1289–95.

    Article  PubMed  CAS  Google Scholar 

  25. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA. 2001;98:31–6.

    Article  PubMed  CAS  Google Scholar 

  26. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2001;2:0032.1–0032.11.

    Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C T Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  28. Lussiana C, Guani B, Mari C, Restagno G, Massobrio M, Revelli A. Mutations and polymorphisms of the FSH receptor (FSHR) gene: clinical implications in female fecundity and molecular biology of FSHR protein and gene. Obstet Gynecol Surv. 2008;63:785–95.

    Article  PubMed  Google Scholar 

  29. McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.

    Article  PubMed  CAS  Google Scholar 

  30. Nargund G, Hutchison L, Scaramuzzi R, Campbell S. Low-dose HCG is useful in preventing OHSS in high-risk women without adversely affecting the outcome of IVF cycles. Reprod Biomed Online. 2007;14:682–5.

    Article  PubMed  CAS  Google Scholar 

  31. Ndiaye K, Fayad T, Silversides DW, Sirois J, Lussier JG. Identification of downregulated messenger RNAs in bovine granulosa cells of dominant follicles following stimulation with human chorionic gonadotropin. Biol Reprod. 2005;73:324–33.

    Article  PubMed  CAS  Google Scholar 

  32. Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303:682–4.

    Article  PubMed  CAS  Google Scholar 

  33. Peluffo MC, Ting AY, Zamah AM, Conti M, Stouffer RL, Zelinski MB, et al. Amphiregulin promotes the maturation of oocytes isolated from the small antral follicles of the rhesus macaque. Hum Reprod. 2012;27:2430–7.

    Article  PubMed  CAS  Google Scholar 

  34. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Stemness”: Transcriptional Profiling of Embryonic and Adult Stem Cells. Science. 2002;298:597–600.

    Article  PubMed  CAS  Google Scholar 

  35. Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13:289–312.

    Article  PubMed  CAS  Google Scholar 

  36. Sasson R, Rimon E, Dantes A, Cohen T, Shinder V, Land-Bracha A, et al. Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signalling and protein kinases. Mol Hum Reprod. 2004;10:299–311.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidt DW, Maier DB, Nulsen JC, Benadiva CA. Reducing the dose of human chorionic gonadotropin in high responders does not affect the outcomes of in vitro fertilization. Fertil Steril. 2004;82:841–6.

    Article  PubMed  CAS  Google Scholar 

  38. Shedden K, Chen W, Kuick R, Ghosh D, Macdonald J, Cho KR, et al. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data. BMC Bioinformatics. 2005;6:26.

    Article  PubMed  Google Scholar 

  39. Skiadas CC, Duan S, Correll M, Rubio R, Karaca N, Ginsburg ES, et al. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells. Mol Hum Reprod. 2012;18(7):362–71.

    Article  PubMed  CAS  Google Scholar 

  40. Sneath PHA. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: W. H. Freeman & Co (Sd); 1973.

    Google Scholar 

  41. van Montfoort AP, Geraedts JP, Dumoulin JC, Stassen AP, Evers JL, Ayoubi TA. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol Hum Reprod. 2008;14:157–68.

    Article  PubMed  Google Scholar 

  42. Xu F, Stouffer RL, Müller J, Hennebold JD, Wright JW, Bahar A, et al. Dynamics of the transcriptome in the primate ovulatory follicle. Mol Hum Reprod. 2011;17:152–65.

    Article  PubMed  CAS  Google Scholar 

  43. Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 2002;30:e48.

    Article  PubMed  Google Scholar 

  44. Zamah AM, Hsieh M, Chen J, Vigne JL, Rosen MP, Cedars MI, et al. Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum Reprod. 2010;25:2569–78.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang B, Schmoyer D, Kirov S, Snoddy J. GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics:. 2004;5:16.

    Article  Google Scholar 

  46. Zhang X, Jafari N, Barnes RB, Confino E, Milad M, Kazer RR. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril. 2005;83 Suppl 1:1169–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Coskun.

Additional information

Capsule

Human chorionic gonadotrophin (hCG) gene expression of granulosa cells following various doses of hCG during IVF treatment.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 26293 kb)

ESM 2

(XLS 859 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coskun, S., Otu, H.H., Awartani, K.A. et al. Gene expression profiling of granulosa cells from PCOS patients following varying doses of human chorionic gonadotropin. J Assist Reprod Genet 30, 341–352 (2013). https://doi.org/10.1007/s10815-013-9935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-9935-y

Keywords

Navigation