Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 3, pp 355–362 | Cite as

Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome

  • Lauren W. Roth
  • Blair McCallie
  • Ruben Alvero
  • William B. Schoolcraft
  • Debra Minjarez
  • Mandy G. Katz-Jaffe
Gonadal Physiology and Disease



To determine if microRNAs are differentially expressed in the follicular fluid of women with PCOS compared to fertile oocyte donors and identify associated altered gene expression.


Women undergoing IVF who met Rotterdam criteria for PCOS or who were fertile oocyte donors were recruited from a private IVF center. Individual follicle fluid was collected at the time of oocyte retrieval. MicroRNA analysis was performed using microarray and validated using real-time PCR on additional samples. Potential gene targets were identified and their expression analyzed by real time PCR.


Microarray profiling of human follicular fluid revealed expression of 235 miRNAs, 29 were differentially expressed between the groups. Using PCR validation, 5 miRNAs (32, 34c, 135a, 18b, and 9) showed significantly increased expression in the PCOS group. Pathway analysis revealed genes involved in insulin regulation and inflammation. Three potential target genes were found to have significantly decreased expression in the PCOS group (interleukin 8, synaptogamin 1, and insulin receptor substrate 2).


MicroRNAs are differentially expressed in the follicular fluid of women with PCOS when compared to fertile oocyte donors. There is also altered expression of potential target genes associated with the PCOS phenotype.


microRNAs Follicular fluid Polycystic ovary syndrome Oocyte donors 



We would like to acknowledge Andrew P. Bradford for his assistance with manuscript editing.

Conflict of interest

LWR received Clinical Research Fellowship and Mentor Award Supported by Pfizer, Inc. for research presented at ENDO 2012 and an ASRM Corporate Member Council In-training Travel Award for the IFFS/ASRM 2013. BM, RA, WBS, DM, and MGKJ have nothing to disclose.


This study was self-funded by the Colorado Center for Reproductive Medicine and the National Foundation for Fertility Research.


  1. 1.
    Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R. Fertil Steril. 2012;97(1):28–38. doi: 10.1016/j.fertnstert.2011.09.024. e25.PubMedCrossRefGoogle Scholar
  2. 2.
    Health and fertility in World Health Organization group 2 anovulatory women. Hum Reprod Update. 2012;18(5):586-99. doi: 10.1093/humupd/dms019.Google Scholar
  3. 3.
    Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod. 2012. doi: 10.1093/humrep/des232.Google Scholar
  4. 4.
    Koivunen R, Pouta A, Franks S, Martikainen H, Sovio U, Hartikainen AL, et al. Fecundability and spontaneous abortions in women with self-reported oligo-amenorrhea and/or hirsutism: Northern Finland Birth Cohort 1966 Study. Hum Reprod. 2008;23(9):2134–9. doi: 10.1093/humrep/den136.PubMedCrossRefGoogle Scholar
  5. 5.
    Sang Q, Yao Z, Wang H, Feng R, Zhao X, Xing Q, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013. doi: 10.1210/jc.2013-1715.Google Scholar
  6. 6.
    Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.PubMedCrossRefGoogle Scholar
  7. 7.
    McCallie B, Schoolcraft WB, Katz-Jaffe MG. Aberration of blastocyst microRNA expression is associated with human infertility. Fertil Steril. 2010;93(7):2374–82. doi: 10.1016/j.fertnstert.2009.01.069.PubMedCrossRefGoogle Scholar
  8. 8.
    Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer. 2008;122(5):969–77. doi: 10.1002/ijc.23343.PubMedCrossRefGoogle Scholar
  9. 9.
    Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007;42(6):1137–41. doi: 10.1016/j.yjmcc.2007.04.004.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, et al. Functional microRNA involved in endometriosis. Mol Endocrinol. 2011;25(5):821–32. doi: 10.1210/me.2010-0371.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wang C, Yang C, Chen X, Yao B, Zhu C, Li L, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem. 2011;57(12):1722–31. doi: 10.1373/clinchem.2011.169714.PubMedCrossRefGoogle Scholar
  12. 12.
    Osman A. MicroRNAs in health and disease–basic science and clinical applications. Clin Lab. 2012;58(5–6):393–402.PubMedGoogle Scholar
  13. 13.
    da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ. cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012;86(3):71. doi: 10.1095/biolreprod.111.093252.PubMedCrossRefGoogle Scholar
  14. 14.
    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41. doi: 10.1373/clinchem.2010.147405.PubMedCrossRefGoogle Scholar
  15. 15.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8. doi: 10.1073/pnas.0804549105.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3):e30679. doi: 10.1371/journal.pone.0030679.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel). 2012;12(3):3359–69. doi: 10.3390/s120303359.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446–54. doi: 10.1161/circgenetics.110.958975.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Jia Y, Zheng R, Guo Y, Wang Y, Guo H, et al. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem. 2010;56(12):1830–8. doi: 10.1373/clinchem.2010.147850.PubMedCrossRefGoogle Scholar
  20. 20.
    Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Burks DJ. Font de Mora J, Schubert M, Withers DJ, Myers MG, Towery HH et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature. 2000;407(6802):377–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Runesson E, Ivarsson K, Janson PO, Brannstrom M. Gonadotropin- and cytokine-regulated expression of the chemokine interleukin 8 in the human preovulatory follicle of the menstrual cycle. J Clin Endocrinol Metab. 2000;85(11):4387–95.PubMedGoogle Scholar
  23. 23.
    Zhou Y, Zhu Y, Zhang S, Wang H, Wang S, Yang X. MicroRNA expression profiles in premature ovarian failure patients and its potential regulate functions. Chinese journal of birth health and heredity. 2011;19:20–2.Google Scholar
  24. 24.
    Neganova I, Al-Qassab H, Heffron H, Selman C, Choudhury AI, Lingard SJ, et al. Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse. Biol Reprod. 2007;76(6):1045–53. doi: 10.1095/biolreprod.106.059360.PubMedCrossRefGoogle Scholar
  25. 25.
    Tucker WC, Chapman ER. Role of synaptotagmin in Ca2 + -triggered exocytosis. Biochem J. 2002;366(Pt 1):1–13. doi: 10.1042/bj20020776.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Lang J, Fukuda M, Zhang H, Mikoshiba K, Wollheim CB. The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic beta-cells: action of synaptotagmin at low micromolar calcium. EMBO J. 1997;16(19):5837–46. doi: 10.1093/emboj/16.19.5837.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nakajima-Nagata N, Sugai M, Sakurai T, Miyazaki J, Tabata Y, Shimizu A. Pdx-1 enables insulin secretion by regulating synaptotagmin 1 gene expression. Biochem Biophys Res Commun. 2004;318(3):631–5. doi: 10.1016/j.bbrc.2004.04.071.PubMedCrossRefGoogle Scholar
  28. 28.
    Nyhlen K, Gautam C, Andersson R, Srinivas U. Modulation of cytokine-induced production of IL-8 in vitro by interferons and glucocorticosteroids. Inflammation. 2004;28(2):77–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Shimizu T, Kaji A, Murayama C, Magata F, Shirasuna K, Wakamiya K, et al. Effects of interleukin-8 on estradiol and progesterone production by bovine granulosa cells from large follicles and progesterone production by luteinizing granulosa cells in culture. Cytokine. 2012;57(1):175–81. doi: 10.1016/j.cyto.2011.11.007.PubMedCrossRefGoogle Scholar
  30. 30.
    Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol. 2012;215(3):323–34. doi: 10.1530/joe-12-0252.PubMedCrossRefGoogle Scholar
  31. 31.
    Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846–60. doi: 10.1038/nrg3079.PubMedCrossRefGoogle Scholar
  32. 32.
    DA Zawadski JK. Diagnostic for polycystic ovary syndrome: Towards a rational approach. Polycystic Ovary Syndrome (Current Issues in Endocrinology and Metabolism). Boston: Blackwell Scientific Inc.; 1992.Google Scholar
  33. 33.
    Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456–88. doi: 10.1016/j.fertnstert.2008.06.035.PubMedCrossRefGoogle Scholar
  34. 34.
    Abbott DH, Bacha F. Ontogeny of polycystic ovary syndrome and insulin resistance in utero and early childhood. Fertil Steril. 2013;100(1):2–11. doi: 10.1016/j.fertnstert.2013.05.023.PubMedCrossRefGoogle Scholar
  35. 35.
    Srivastava A, Goldberger H, Dimtchev A, Ramalinga M, Chijioke J, Marian C, et al. MicroRNA Profiling in Prostate Cancer - The Diagnostic Potential of Urinary miR-205 and miR-214. PLoS One. 2013;8(10):e76994. doi: 10.1371/journal.pone.0076994.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Roncarati R, Anselmi CV, Losi MA, Papa L, Cavarretta E, Costa Martins PD, et al. Circulating miR-29a, Among Other Upregulated microRNAs, is the Only Biomarker for Both Hypertrophy and Fibrosis in Patients with Hypertrophic Cardiomyopathy. J Am Coll Cardiol. 2013. doi: 10.1016/j.jacc.2013.09.041.PubMedGoogle Scholar
  37. 37.
    Aguado-Fraile E, Ramos E, Conde E, Rodriguez M, Liano F, Garcia-Bermejo ML. microRNAs in the kidney: Novel biomarkers of Acute Kidney Injury. Nefrologia. 2013. doi: 10.3265/Nefrologia.pre2013.Aug.12198.PubMedGoogle Scholar
  38. 38.
    Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T. MicroRNAs in Plasma and Cerebrospinal Fluid as Potential Markers for Alzheimer’s Disease. J Alzheimers Dis. 2013. doi: 10.3233/jad-130932.Google Scholar
  39. 39.
    Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278–86. doi: 10.2337/db12-0963.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lauren W. Roth
    • 1
  • Blair McCallie
    • 2
  • Ruben Alvero
    • 1
  • William B. Schoolcraft
    • 3
  • Debra Minjarez
    • 3
  • Mandy G. Katz-Jaffe
    • 2
  1. 1.Division of Reproductive Endocrinology and InfertilityUniversity of ColoradoDenverUSA
  2. 2.National Foundation for Fertility ResearchCircle Lone TreeUSA
  3. 3.Colorado Center for Reproductive MedicineCircle Lone TreeUSA

Personalised recommendations