Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 1, pp 115–120 | Cite as

Characterisation of the methylation pattern in the intragenic CpG island of the IGF2 gene in Bos taurus indicus cumulus cells during in vitro maturation

  • Maurício Machaim Franco
  • Nádia Simarro Fagundes
  • Valquíria Alice Michalczechen-Lacerda
  • Ester Siqueira Caixeta
  • Fernanda de Castro Rodrigues
  • Grazieli Marinheiro Machado
  • Allice Rodrigues Ferreira
  • Margot Alves Nunes Dode
Gonadal Physiology



The aim of this study was to characterise the methylation pattern in a CpG island of the IGF2 gene in cumulus cells from 1–3 mm and  ≥ 8.0 mm follicles and to evaluate the effects of in vitro maturation on this pattern.


Genomic DNA was treatment with sodium bisulphite. Nested PCR using bisulphite-treated DNA was performed, and DNA methylation patterns have been characterised.


There were no differences in the methylation pattern among groups (P > 0.05). Cells of pre-IVM and post-IVM from small follicles showed methylation levels of 78.17 ± 14.11 % and 82.93±5.86 %, respectively, and those from large follicles showed methylation levels of 81.81 ± 10.40 % and 79.64 ± 13.04 %, respectively. Evaluating only the effect of in vitro maturation, cells of pre-IVM and post-IVM COCs showed methylation levels of 80.17 ± 12.01 % and 81.19 ± 10.15 %.


In conclusion, the methylation levels of the cumulus cells of all groups were higher than that expected from the imprinted pattern of somatic cells. As the cumulus cells from the pre-IVM follicles were not subjected to any in vitro manipulation, the hypermethylated pattern that was observed may be the actual physiological methylation pattern for this particular locus in these cells. Due the importance of DNA methylation in oogenesis, and to be a non-invasive method for determining oocyte quality, the identification of new epigenetic markers in cumulus cells has great potential to be used to support reproductive biotechniques in humans and other mammals.


Bovine Cumulus cells IGF2 Epigenetics DNA methylation In vitro maturation 


Conflicts of interest

None of the authors have any conflict of interest to declare.


  1. 1.
    Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121:647–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Ali A, François P, Christian V, Marc-André S. The potential role of gap junction communication between cumulus cells and bovine oocytes during in vitro maturation. Mol Reprod Dev. 2005;71:358–67.CrossRefGoogle Scholar
  3. 3.
    Altarescu G, Beeri R, Eiges R, Epsztejn-Litman S, Eldar-Geva T, Elstein D, et al. Prevention of lysosomal storage diseases and derivation of mutant stem cell lines by preimplantation genetic diagnosis. Mol Biol Int. 2012;797342.Google Scholar
  4. 4.
    Amarger V, Nguyen M, van Laere AS, Braunschweig M, Nezer C, Georges M, et al. Comparative sequence analysis of the INS-IGF2-H19 gene cluster in pigs. Mamm Genome. 2002;13:388–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Bao S, Obata Y, Carroll J, Domeki I, Kono T. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol Reprod. 2000;62:616–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Caixeta ES, Ripamonte P, Franco MM, Buratini J, Dode MAN. Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus: an approach to identify marker genes for developmental competence. Reprod Fertil Dev. 2009;21:655–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;226:167–79.PubMedCrossRefGoogle Scholar
  8. 8.
    Carvalho JO, Michalczechen-Lacerda VA, Sartori R, Rodrigues FC, Bravim O, Franco MM, et al. The methylation patterns of the IGF2 and IGF2R genes in bovine spermatozoa are not affected by flow-cytometric sex sorting. Mol Reprod Dev. 2012;79:77–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Chao W, D’amore PA. IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 2008;19:111–20.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002;417:945–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Coticchio G, Sereni E, Serrao L, Mazzone S, Iadarola I, Borini A. What criteria for the definition of oocyte quality? Ann N Y Acad Sci. 2004;1034:132–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Curchoe C, Zhang S, Bin Y, Zhang X, Yang L, Feng D, et al. Promoter-specific expression of the imprinted IGF2 gene in cattle (Bos taurus). Biol Reprod. 2005;73:1275–81.PubMedCrossRefGoogle Scholar
  13. 13.
    de Chiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 1990;345:78–80.CrossRefGoogle Scholar
  14. 14.
    de Pagter-Holthuizen P, Jansen M, van der Kammen RA, Vanschaik FM, Sussenbach JS. Differential expression of the human insulin-like growth factor II gene. Characterization of the IGF-II mRNAs and an mRNA encoding a putative IGF-II-associated protein. Biochim Biophys Acta. 1988;950:282–95.PubMedCrossRefGoogle Scholar
  15. 15.
    de Wit AAC, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. J Anim Sci. 2000;78:1277–83.PubMedGoogle Scholar
  16. 16.
    Dindot SV, Farin PW, Farin CE, Romano J, Walker S, Long C. Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol Reprod. 2004;71:470–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Efstratiadis A. Genetics of mouse growth. Int J Dev Biol. 1998;42:955–76.PubMedGoogle Scholar
  18. 18.
    Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A. 2002;99:2890–4.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Fagundes NS, Michalczechen-Lacerda VA, Caixeta ES, Machado GM, Rodrigues FC, Melo EO, et al. Methylation status in the intragenic differentially methylated region of the IGF2 locus in Bos taurus indicus oocytes with different developmental competencies. Mol Hum Reprod. 2011;17:85–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Feil R, Walter J, Allen ND, Reik W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development. 1994;120:2933–43.PubMedGoogle Scholar
  21. 21.
    Gebert C, Wrenzycki C, Herrmann D, Groger D, Reinhardt R, Hajkova P, et al. The bovine IGF2 gene is differentially methylated in oocyte and sperm DNA. Genomics. 2006;88:222–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Gebert C, Wrenzycki C, Herrmann D, Gröger D, Thiel J, Reinhardt R, et al. DNA methylation in the IGF2 intragenic DMR is re-established in a sex-specific manner in bovine blastocysts after somatic cloning. Genomics. 2009;94:63–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Goodall JJ, Schmutz SM. Linkage mapping of IGF2 on cattle chromosome 29. Anim Genet. 2003;34:313.PubMedCrossRefGoogle Scholar
  24. 24.
    Imamura T, Kerjean A, Heams T, Kupiec JJ, Thenevin C, Pàldi A. Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo. J Biol Chem. 2005;280:20171–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;84:14–23.Google Scholar
  26. 26.
    Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland MP. Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod Domest Anim. 2003;38:259–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Lopes S, Lewis A, Hajkova P, Dean W, Oswald J, Forné T, et al. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet. 2003;12:295–305.PubMedCrossRefGoogle Scholar
  28. 28.
    Murrell A, Heeson S, Bowden L, Constância M, Dean W, Kelsey G, et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep. 2001;2:1101–6.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Obata Y, Kono T. Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem. 2002;277:5285–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10:475–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Prickett AR, Oakey RJ. A survey of tissue-specific genomic imprinting in mammals. Mol Genet Genomics. 2012;287:621–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez KF, Farin CE. Developmental capacity of bovine cumulus oocyte complexes after transcriptional inhibition of germinal vesicle breakdown. Theriogenology. 2004;61:1499–511.PubMedCrossRefGoogle Scholar
  34. 34.
    Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–62.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Shim SW, Han DW, Yang JH, Lee BY, Kim SB, Shim H, et al. Derivation of embryonic germ cells from post migratory primordial germ cells, and methylation analysis of their imprinted genes by bisulfite genomic sequencing. Mol Cells. 2008;259:358–67.Google Scholar
  36. 36.
    Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65:126–36.PubMedCrossRefGoogle Scholar
  37. 37.
    Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64:904–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Van Wagtendonk-de Leeuw AM. Ovum pick up and in vitro production in the bovine after use in several generations: a 2005 status. Theriogenology. 2006;65:914–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Vozzi C, Formenton A, Chanson A, Senn A, Sahli R, Shaw P, et al. Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction. 2001;122:619–28.PubMedCrossRefGoogle Scholar
  40. 40.
    Warzych E, Pers-Kamczyc E, Krzywak A, Dudzińska S, Lechniak D. Apoptotic index within cumulus cells is a questionable marker of meiotic competence of bovine oocytes matured in vitro. Reprod Biol. 2013;13:82–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Weber M, Milligan L, Delalbre A, Antoine E, Brunel C, Cathala G, et al. Extensive tissue-specific variation of allelic methylation in the Igf2 gene during mouse fetal development: relation to expression and imprinting. Mech Dev. 2001;101:133–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Yeo CX, Gilchrist RB, Lane M. Disruption of bidirectional oocyte-cumulus paracrine signaling during in vitro maturation reduces subsequent mouse oocyte developmental competence. Biol Reprod. 2009;80:1072–80.PubMedCrossRefGoogle Scholar
  43. 43.
    Yin XY, Tan K, Vajta G, Jiang H, Tan YQ, Zhang CL, et al. Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. 2013;88:1–6.CrossRefGoogle Scholar
  44. 44.
    Young LE, Fernandes K, Mcevoy TG, Butterwidth SC, Gutierrez CG, Carolan C, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maurício Machaim Franco
    • 1
  • Nádia Simarro Fagundes
    • 2
  • Valquíria Alice Michalczechen-Lacerda
    • 3
  • Ester Siqueira Caixeta
    • 4
  • Fernanda de Castro Rodrigues
    • 2
  • Grazieli Marinheiro Machado
    • 1
  • Allice Rodrigues Ferreira
    • 5
  • Margot Alves Nunes Dode
    • 1
  1. 1.Embrapa Genetic Research and BiotechnologyLaboratory of Animal ReproductionBrasíliaBrazil
  2. 2.School of Veterinary MedicineUniversity of UberlândiaUberlândiaBrazil
  3. 3.Department of Cell BiologyUniversity of BrasíliaBrasíliaBrazil
  4. 4.Department of Animal ReproductionUniversity of José Rosário Vellano (UNIFENAS)AlfenasBrazil
  5. 5.Department of Animal Reproduction and Veterinary RadiologyState University of São Paulo “Júlio of Mesquita Filho” College of Medicine Veterinary and Animal ScienceBotucatuBrazil

Personalised recommendations