Skip to main content

Advertisement

Log in

Accumulation of oocytes from a few modified natural cycles to improve IVF results: a pilot study

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the role of co-transfer of embryos derived from vitrified oocytes accumulated during the previous modified natural cycles and an embryo developed from the last one as an alternative to repetitive single embryo transfer in a fresh modified natural cycle.

Methods

Thirty-six patients underwent ICSI procedure with three frozen natural oocytes supplemented by a fresh one obtained from the fourth modified natural cycle. Thirty-one controls received at least three consecutive single embryo transfer in a fresh modified natural cycle.

Results

In the study group the oocyte retrieval, survival and total fertilization rate were 73.0 %, 78.1 %, and 64.5 %, respectively. Fifty-two embryos were transferred in 29 transfers. In the control group the oocyte retrieval and fertilization rate was 77.4 % and 83.7 %, respectively. Fifty single embryo transfers were performed. Of a total 14 pregnancies obtained in the study group 10 were defined as clinical and 4 as abortions. In the control group a total of 8 single clinical pregnancies and 2 miscarriages were encountered. The overall (20.0 % vs 48.2 %) and the clinical (16.0 % vs 34.4 %) pregnancy rate were significantly higher in the study group having cumulative embryo transfer following the oocyte accumulation.

Conclusions

These data demonstrate that the co-transfer of embryos derived from vitrified oocytes accumulated during the previous modified natural cycles and an embryo developed from the last fresh modified natural cycle assure an excellent clinical outcome with the overall and clinical pregnancy rate significantly higher compared to the repetitive single embryo transfer in a fresh modified natural cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;12:366.

    Article  Google Scholar 

  2. Pelinck MJ, Hoek A, Simons AHM, Heineman MJ. Efficacy of natural Cycle IVF: a review of the literature. Hum Reprod Update. 2002;8:129–39.

    Article  PubMed  CAS  Google Scholar 

  3. Pelinck MJ, Vogel NE, Hoek A, Simons AH, Arts EG, Mochtar MH, et al. Cumulative pregnancy rates after three cycles of minimal stimulation IVF and results according to subfertility diagnosis: a multicentre cohort study. Hum Reprod. 2006;21:2375–83.

    Article  PubMed  CAS  Google Scholar 

  4. Pelinck MJ, Vogel NEA, Arts EGJM, Simons AHM, Heineman MJ, Hock A. Cumulative pregnancy rates after a maximum of nine cycles of modified natural cycle IVF and analysis of patient drop-out. Hum Reprod. 2007;22:2463–70.

    Article  PubMed  CAS  Google Scholar 

  5. Kadoch IJ, Philips SJ, Bissonnette F. Modified natural-cycle in vitro fertilization should be considered as the first approach in young poor responders. Fertil Steril. 2011;96:1066–8.

    Article  PubMed  Google Scholar 

  6. Surrey ES, Schoolcraft WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertil Steril. 2000;73:667–76.

    Article  PubMed  CAS  Google Scholar 

  7. Ubaldi FM, Rienzi L, Ferrero S, Baroni E, Sapienza F, Cobellis L, et al. Management of poor responder in IVF. Reprod Biomed Online. 2005;10:235–46.

    Article  PubMed  CAS  Google Scholar 

  8. Dor J, Seidman DS, AmudaI E, Bider D, Levran D, Mahiach S. Adjuvant growth hormone therapy in poor responders to in-vitro fertilization: a prospective randomized placebo-controlled double-blind study. Hum Reprod. 1995;10:40–3.

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Velasco JA, Isaza V, Requena A, Martinez-Salazar FJ, Landazabal A, Remohi J, et al. High doses of gonadotrophins combined with stop versus non-stop protocol of GnRH analogue administration in low responder IVF patients: a prospective, randomized, controlled trial. Hum Reprod. 2000;15:2292–6.

    Article  PubMed  CAS  Google Scholar 

  10. Morgia F, Sbracia M, Schimberni M, Giallonardo A, Piscitelli C, Giannini P, et al. A controlled trial of natural cycle versus microdose gonadotrophin-releasing hormone analog flare cycles in poor responders undergoing in vitro fertilization. Fertil Steril. 2004;81:1542–7.

    Article  PubMed  CAS  Google Scholar 

  11. Kim CH, Kim SR, Cheon YP, Kim SH, Chae HD, Kang BM. Minimal stimulation using gonadotrophin-releasing hormone (GnRH) antagonist and recombinant human follicle-stimulating hormone versus GnRH antagonist multiple-dose protocol in low responders undergoing in vitro/intracytoplasmatic sperm injection. Fertil Steril. 2009;92:2082–4.

    Article  PubMed  CAS  Google Scholar 

  12. Fábregues F, Peñarrubia J, Creus M, Manau D, Casals G, Carmona F, et al. Transdermal testosterone may improve ovarian response to gonadotrophins in low-responders IVF patient: a randomized, clinical trial. Hum Reprod. 2008;24:349–59.

    Article  PubMed  Google Scholar 

  13. Diluigi AJ, Engmann L, Schmidt DW, Benadiva CA, Nulsen JC. A randomized trial of microdose leuprolide acetate protocol versus luteal phase ganirelix protocol in predicted poor responders. Fertil Steril. 2011;95:2531–3.

    Article  PubMed  CAS  Google Scholar 

  14. Polyzos NP, Blockeel C, Verpoest W, De Vos M, Stoop D, Vloeberghs V, et al. Live birth rates following natural cycle IVF in women with poor ovarian response according to the Bologna criteria. Hum Reprod. 2012;27:3481–6.

    Article  PubMed  CAS  Google Scholar 

  15. Litton JK. Curr Treat Options in Oncol. 2012;13:137–45.

    Article  Google Scholar 

  16. D’Hooghe TM, Denys B, Spiessens C, Meulman C, Debrock S. Is the endometriosis recurrence rate increased after ovarian hyperstimulation? Fertil Steril. 2006;86:283–90.

    Article  PubMed  Google Scholar 

  17. Hojgaard A, Ingerslev HJ, Dinesen J. Friendly IVF: patient opinions. Hum Reprod. 2001;16:1391–6.

    Article  PubMed  CAS  Google Scholar 

  18. Nargund G, Waterstone J, Bland J, Philips Z, Parsons J, Campbell S. Cumulative conception and live birth rates in natural (unstimulated) IVF cycles. Hum Reprod. 2001;16:259–62.

    Article  PubMed  CAS  Google Scholar 

  19. Aboulghar MA, Mansour RT, Serour GA, Amin YM, Sattar MA, Ramzy AM. In vitro fertilization in a spontaneous cycle: a successful simple protocol. J Obstet Gynaecol. 1995;21:337–40.

    Article  CAS  Google Scholar 

  20. Keizer M, Schelling K, Pelinck M, Hoek A, Simons A, Heineman M. Larger birth weight in singletons born after minimal stimulation IVF compared to singletons born after COH-IVF. Fertil Steril. 2005;84:81–2.

    Article  Google Scholar 

  21. Rongieres-Bertrand C, Olivennes F, Righini C, Fanchin R, Taieb J, Hamamah S, et al. Revival of the natural cycles in in-vitro fertilization with the use of a new gonadotrophin-releasing hormone antagonist (Cetrorelix): a pilot study with minimal stimulation. Hum Reprod. 1999;14:683–8.

    Article  PubMed  CAS  Google Scholar 

  22. Vogel NE, Pelinck MJ, Arts EG, Hoek A, Simons AH, Heineman MJ. Effectiveness of the modified natural cycle ICSI: results of a pilot study. Fertil Steril. 2003;80:P-7.

    Article  Google Scholar 

  23. Castel-Branco A, Achour-Frydman N, Kadoch J, Franchin R, Tachdjian G, Frydman R. In vitro fertilization and embryo transfer in seminatural cycles for patients with ovarian aging. Fertil Steril. 2005;84:875–80.

    Article  Google Scholar 

  24. Schimberni M, Morgia F, Colabianchi J, Giallonardo A, Piscitelli C, Giannini P, et al. Natural-cycle in vitro fertilization in poor responder patients: a survey of 500 consecutive cycles. Fertil Steril. 2009;92:1297–301.

    Article  PubMed  Google Scholar 

  25. Paulson RJ, Sauer MV, Francis MM, Macaso TM, Lobo RA. In vitro fertilization in unstimulated cycles: the University of Southern California experience. Fertil Steril. 1992;57:290–3.

    PubMed  CAS  Google Scholar 

  26. Cobo A, Garrido N, Crespo J, José R, Pellicer A. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online. 2012;24:424–32.

    Article  PubMed  CAS  Google Scholar 

  27. Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med. 2009;27:450–5.

    Article  PubMed  CAS  Google Scholar 

  28. Greco E, Litwicka K, Ferrero S, Baroni E, Sapienza F, Rienzi L, et al. GnRH-antagonists in ovarian stimulation for ICSI with oocyte restriction: a matched, controlled study. Reprod Biomed Online. 2007;14:572–8.

    Article  PubMed  CAS  Google Scholar 

  29. Ubaldi F, Anniballo R, Romano S, Baroni E, Albricci L, Colamaria S. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum Reprod. 2010;25:1199–205.

    Article  PubMed  Google Scholar 

  30. Basir GS, O WS, Ng EH, Ho PC. Morphometric analysis of peri-implantation endometrium in patients having excessively high oestradiol concentrations after ovarian stimulation. Hum Reprod. 2001;16:435–40.

    Article  PubMed  CAS  Google Scholar 

  31. McAvey B, Zapantis A, Jindal SK, Lieman HJ, Polotsky AJ. How many eggs are needed to produce an assisted reproductive technology baby: is more always better? Fertil Steril. 2011;96:332–5.

    Article  PubMed  Google Scholar 

  32. Reyftmann L, Dechaud H, Loup V, Anahory T, Brunet-Joyeux C, Lacroix N. Natural cycle in vitro fertilization cycle in poor responders. Gynecol Obstet Fertil. 2007;35:352–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kim TJ, Laufer LR, Hong SW. Vitrification of oocytes produces high pregnancy rate when carried out in fertile women. Fertil Steril. 2010;93:467–74.

    Article  PubMed  Google Scholar 

  34. Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006;86:70–80.

    Article  PubMed  Google Scholar 

  35. Tulandi T, Huang JYJ, Tan SL. Preservation of femal fertility. An essential progress. Obstet Gynecol. 2008;112:1160–72.

    Article  PubMed  Google Scholar 

  36. Homburg R, van der Veen F, Silber SJ. Oocyte vitrification-women’s emancipation set in stone. Fertil Steril. 2009;91:1319–20.

    Article  PubMed  Google Scholar 

  37. Cobo A, Kuwayama M, Pérez S, Ruiz A, Pellicer A, Remohí J. Comparision of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitirified by the Cryotop method. Fertil Steril. 2008;89:1657–64.

    Article  PubMed  Google Scholar 

  38. Porcu E, Fabbri R, Damiano G, Giunchi S, Fratto R, Ciotti PM, et al. Clinical experience and application of oocyte cryopreservation. Mol Cell Endocrinol. 2000;27:33–7.

    Article  Google Scholar 

  39. Kuwayama M. Highly efficient vitrification for cryopresevation of human oocytes and embryos. Theriogenology. 2007;67:73–80.

    Article  PubMed  CAS  Google Scholar 

  40. Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method of cryopresevation of human oocytes. Reprod Biomed Online. 2005;11:300–8.

    Article  PubMed  Google Scholar 

  41. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18:769–76.

    Article  PubMed  CAS  Google Scholar 

  42. Minasi MG, Fabozzi G, Casciani V, Ferrero S, Litwicka K, Greco E. Efficiency of slush nitrogen vitrification of human oocytes vitirified with or without cumulus cells in relation to survival rate and meiotic spindle competence. Fertil Steril. 2012;5:1220–5.

    Article  Google Scholar 

  43. Wennerholm UB, Soderstrom-Anttila V, Bergh C, Aittomaki K, Hazekamp J, Nygren KG, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009;24:2158–72.

    Article  PubMed  Google Scholar 

  44. Vandervorst M, Liebaers I, Sermon K, Staessen C, De Vos A, Van de Velde H, et al. Successful pre-implantation genetic diagnosis is related to the number of available cumulus-oocyte complexes. Hum Reprod. 1998;13:3169–76.

    Article  PubMed  CAS  Google Scholar 

  45. Ludwig M, al-Hasani S, Küpker W, Bauer O, Diedrich K. A new indication for an intracytoplasmic sperm injection procedure outside male factor infertility. Eur J Obstet Gynecol Reprod Biol. 1997;75:207–10.

    Article  PubMed  CAS  Google Scholar 

  46. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmatic sperm injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  PubMed  CAS  Google Scholar 

  47. Nagy ZP, Liu J, Joris H, Verheyen G, Tournaye H, Camus M, et al. The results of intracytoplasmatic sperm injection is not related to any of the three basic sperm parameters. Hum Reprod. 1995;10:1123–9.

    PubMed  CAS  Google Scholar 

  48. Melie NA, Adeniyi OA, Igbineweka OM, Ajayi RA. Predictive value of the number of oocytes retrieved at ultrasound-directed follicular aspiration with regard to fertilization rates and pregnancy outcome in intracytoplasmic sperm injection treatment cycles. Fertil Steril. 2003;80:1376–9.

    Article  PubMed  Google Scholar 

  49. Verberg MFG, Eijkemans MJC, Macklon NS, Heijnen EMEW, Baart EB, Hofmann FP. The clinical significance of the retrieval of a low number of oocytes following mild ovarian stimulation for IVF: a meta-analysis. Hum Reprod Update. 2009;15:5–12.

    Article  PubMed  CAS  Google Scholar 

  50. Hohmann FP, Macklon NS, Fauser BCJM. A randomized comparision of two ovarian stimulation protocols with gonadotrophin-releasing hormone (GnRH) antagonist cotreatment for in vitro fertilization commencing recombinant follicle-stimulating hormone on cycle day 2 or 5 with the standard long GnRH agonist protocol. J Clin Endocrinol Metab. 2003;88:166–73.

    Article  PubMed  CAS  Google Scholar 

  51. Timeva T, Milachich T, Antonova I, Arabaji T, Shterev A, Hatim O. Correlation between number of retrive oocytes and pregnancy rate after in vitro fertilization/intracytoplasmic sperm injection. Sci World J. 2006;6:686–90.

    Article  Google Scholar 

  52. Panadian Z, Bhattacharya S, Ozturk O, Serour GI, Templeton A. Number of embryos for transfer following in-vitro fertilization or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2004;18, CD003416.

    Google Scholar 

  53. Panadian Z, Bhattacharya S, Ozturk O, Serour GI, Templeton A. Number of embryos for transfer following in-vitro fertilization or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2009;18, CD003416.

    Google Scholar 

  54. Jonsdottir I, Lundin K, Bergh C. Double embryo transfer gives good pregnancy and live birth rates in poor responders with a modest increase in multiple birth rates: results from an observational study. Acta Obstet Gynecol Scand. 2011;90:761–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Litwicka.

Additional information

Capsule The co‐transfer of embryos derived from vitrified natural oocytes and an embryo developed from the fresh natural cycle assure an excellent overall and clinical pregnancy rate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, E., Litwicka, K., Arrivi, C. et al. Accumulation of oocytes from a few modified natural cycles to improve IVF results: a pilot study. J Assist Reprod Genet 30, 1465–1470 (2013). https://doi.org/10.1007/s10815-013-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0103-1

Keywords

Navigation