Journal of Assisted Reproduction and Genetics

, Volume 30, Issue 11, pp 1465–1470 | Cite as

Accumulation of oocytes from a few modified natural cycles to improve IVF results: a pilot study

  • Ermanno Greco
  • Katarzyna LitwickaEmail author
  • Cristiana Arrivi
  • Maria Teresa Varricchio
  • Daniela Zavaglia
  • Cecilia Mencacci
  • Maria Giulia Minasi
Assisted Reproduction Technologies



To evaluate the role of co-transfer of embryos derived from vitrified oocytes accumulated during the previous modified natural cycles and an embryo developed from the last one as an alternative to repetitive single embryo transfer in a fresh modified natural cycle.


Thirty-six patients underwent ICSI procedure with three frozen natural oocytes supplemented by a fresh one obtained from the fourth modified natural cycle. Thirty-one controls received at least three consecutive single embryo transfer in a fresh modified natural cycle.


In the study group the oocyte retrieval, survival and total fertilization rate were 73.0 %, 78.1 %, and 64.5 %, respectively. Fifty-two embryos were transferred in 29 transfers. In the control group the oocyte retrieval and fertilization rate was 77.4 % and 83.7 %, respectively. Fifty single embryo transfers were performed. Of a total 14 pregnancies obtained in the study group 10 were defined as clinical and 4 as abortions. In the control group a total of 8 single clinical pregnancies and 2 miscarriages were encountered. The overall (20.0 % vs 48.2 %) and the clinical (16.0 % vs 34.4 %) pregnancy rate were significantly higher in the study group having cumulative embryo transfer following the oocyte accumulation.


These data demonstrate that the co-transfer of embryos derived from vitrified oocytes accumulated during the previous modified natural cycles and an embryo developed from the last fresh modified natural cycle assure an excellent clinical outcome with the overall and clinical pregnancy rate significantly higher compared to the repetitive single embryo transfer in a fresh modified natural cycle.


Oocyte vitrification Natural cycle Clinical efficacy ICSI 


  1. 1.
    Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;12:366.CrossRefGoogle Scholar
  2. 2.
    Pelinck MJ, Hoek A, Simons AHM, Heineman MJ. Efficacy of natural Cycle IVF: a review of the literature. Hum Reprod Update. 2002;8:129–39.PubMedCrossRefGoogle Scholar
  3. 3.
    Pelinck MJ, Vogel NE, Hoek A, Simons AH, Arts EG, Mochtar MH, et al. Cumulative pregnancy rates after three cycles of minimal stimulation IVF and results according to subfertility diagnosis: a multicentre cohort study. Hum Reprod. 2006;21:2375–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Pelinck MJ, Vogel NEA, Arts EGJM, Simons AHM, Heineman MJ, Hock A. Cumulative pregnancy rates after a maximum of nine cycles of modified natural cycle IVF and analysis of patient drop-out. Hum Reprod. 2007;22:2463–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Kadoch IJ, Philips SJ, Bissonnette F. Modified natural-cycle in vitro fertilization should be considered as the first approach in young poor responders. Fertil Steril. 2011;96:1066–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Surrey ES, Schoolcraft WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertil Steril. 2000;73:667–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Ubaldi FM, Rienzi L, Ferrero S, Baroni E, Sapienza F, Cobellis L, et al. Management of poor responder in IVF. Reprod Biomed Online. 2005;10:235–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Dor J, Seidman DS, AmudaI E, Bider D, Levran D, Mahiach S. Adjuvant growth hormone therapy in poor responders to in-vitro fertilization: a prospective randomized placebo-controlled double-blind study. Hum Reprod. 1995;10:40–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Garcia-Velasco JA, Isaza V, Requena A, Martinez-Salazar FJ, Landazabal A, Remohi J, et al. High doses of gonadotrophins combined with stop versus non-stop protocol of GnRH analogue administration in low responder IVF patients: a prospective, randomized, controlled trial. Hum Reprod. 2000;15:2292–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Morgia F, Sbracia M, Schimberni M, Giallonardo A, Piscitelli C, Giannini P, et al. A controlled trial of natural cycle versus microdose gonadotrophin-releasing hormone analog flare cycles in poor responders undergoing in vitro fertilization. Fertil Steril. 2004;81:1542–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim CH, Kim SR, Cheon YP, Kim SH, Chae HD, Kang BM. Minimal stimulation using gonadotrophin-releasing hormone (GnRH) antagonist and recombinant human follicle-stimulating hormone versus GnRH antagonist multiple-dose protocol in low responders undergoing in vitro/intracytoplasmatic sperm injection. Fertil Steril. 2009;92:2082–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Fábregues F, Peñarrubia J, Creus M, Manau D, Casals G, Carmona F, et al. Transdermal testosterone may improve ovarian response to gonadotrophins in low-responders IVF patient: a randomized, clinical trial. Hum Reprod. 2008;24:349–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Diluigi AJ, Engmann L, Schmidt DW, Benadiva CA, Nulsen JC. A randomized trial of microdose leuprolide acetate protocol versus luteal phase ganirelix protocol in predicted poor responders. Fertil Steril. 2011;95:2531–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Polyzos NP, Blockeel C, Verpoest W, De Vos M, Stoop D, Vloeberghs V, et al. Live birth rates following natural cycle IVF in women with poor ovarian response according to the Bologna criteria. Hum Reprod. 2012;27:3481–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Litton JK. Curr Treat Options in Oncol. 2012;13:137–45.CrossRefGoogle Scholar
  16. 16.
    D’Hooghe TM, Denys B, Spiessens C, Meulman C, Debrock S. Is the endometriosis recurrence rate increased after ovarian hyperstimulation? Fertil Steril. 2006;86:283–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Hojgaard A, Ingerslev HJ, Dinesen J. Friendly IVF: patient opinions. Hum Reprod. 2001;16:1391–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Nargund G, Waterstone J, Bland J, Philips Z, Parsons J, Campbell S. Cumulative conception and live birth rates in natural (unstimulated) IVF cycles. Hum Reprod. 2001;16:259–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Aboulghar MA, Mansour RT, Serour GA, Amin YM, Sattar MA, Ramzy AM. In vitro fertilization in a spontaneous cycle: a successful simple protocol. J Obstet Gynaecol. 1995;21:337–40.CrossRefGoogle Scholar
  20. 20.
    Keizer M, Schelling K, Pelinck M, Hoek A, Simons A, Heineman M. Larger birth weight in singletons born after minimal stimulation IVF compared to singletons born after COH-IVF. Fertil Steril. 2005;84:81–2.CrossRefGoogle Scholar
  21. 21.
    Rongieres-Bertrand C, Olivennes F, Righini C, Fanchin R, Taieb J, Hamamah S, et al. Revival of the natural cycles in in-vitro fertilization with the use of a new gonadotrophin-releasing hormone antagonist (Cetrorelix): a pilot study with minimal stimulation. Hum Reprod. 1999;14:683–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Vogel NE, Pelinck MJ, Arts EG, Hoek A, Simons AH, Heineman MJ. Effectiveness of the modified natural cycle ICSI: results of a pilot study. Fertil Steril. 2003;80:P-7.CrossRefGoogle Scholar
  23. 23.
    Castel-Branco A, Achour-Frydman N, Kadoch J, Franchin R, Tachdjian G, Frydman R. In vitro fertilization and embryo transfer in seminatural cycles for patients with ovarian aging. Fertil Steril. 2005;84:875–80.CrossRefGoogle Scholar
  24. 24.
    Schimberni M, Morgia F, Colabianchi J, Giallonardo A, Piscitelli C, Giannini P, et al. Natural-cycle in vitro fertilization in poor responder patients: a survey of 500 consecutive cycles. Fertil Steril. 2009;92:1297–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Paulson RJ, Sauer MV, Francis MM, Macaso TM, Lobo RA. In vitro fertilization in unstimulated cycles: the University of Southern California experience. Fertil Steril. 1992;57:290–3.PubMedGoogle Scholar
  26. 26.
    Cobo A, Garrido N, Crespo J, José R, Pellicer A. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online. 2012;24:424–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med. 2009;27:450–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Greco E, Litwicka K, Ferrero S, Baroni E, Sapienza F, Rienzi L, et al. GnRH-antagonists in ovarian stimulation for ICSI with oocyte restriction: a matched, controlled study. Reprod Biomed Online. 2007;14:572–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Ubaldi F, Anniballo R, Romano S, Baroni E, Albricci L, Colamaria S. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum Reprod. 2010;25:1199–205.PubMedCrossRefGoogle Scholar
  30. 30.
    Basir GS, O WS, Ng EH, Ho PC. Morphometric analysis of peri-implantation endometrium in patients having excessively high oestradiol concentrations after ovarian stimulation. Hum Reprod. 2001;16:435–40.PubMedCrossRefGoogle Scholar
  31. 31.
    McAvey B, Zapantis A, Jindal SK, Lieman HJ, Polotsky AJ. How many eggs are needed to produce an assisted reproductive technology baby: is more always better? Fertil Steril. 2011;96:332–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Reyftmann L, Dechaud H, Loup V, Anahory T, Brunet-Joyeux C, Lacroix N. Natural cycle in vitro fertilization cycle in poor responders. Gynecol Obstet Fertil. 2007;35:352–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim TJ, Laufer LR, Hong SW. Vitrification of oocytes produces high pregnancy rate when carried out in fertile women. Fertil Steril. 2010;93:467–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006;86:70–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Tulandi T, Huang JYJ, Tan SL. Preservation of femal fertility. An essential progress. Obstet Gynecol. 2008;112:1160–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Homburg R, van der Veen F, Silber SJ. Oocyte vitrification-women’s emancipation set in stone. Fertil Steril. 2009;91:1319–20.PubMedCrossRefGoogle Scholar
  37. 37.
    Cobo A, Kuwayama M, Pérez S, Ruiz A, Pellicer A, Remohí J. Comparision of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitirified by the Cryotop method. Fertil Steril. 2008;89:1657–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Porcu E, Fabbri R, Damiano G, Giunchi S, Fratto R, Ciotti PM, et al. Clinical experience and application of oocyte cryopreservation. Mol Cell Endocrinol. 2000;27:33–7.CrossRefGoogle Scholar
  39. 39.
    Kuwayama M. Highly efficient vitrification for cryopresevation of human oocytes and embryos. Theriogenology. 2007;67:73–80.PubMedCrossRefGoogle Scholar
  40. 40.
    Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method of cryopresevation of human oocytes. Reprod Biomed Online. 2005;11:300–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18:769–76.PubMedCrossRefGoogle Scholar
  42. 42.
    Minasi MG, Fabozzi G, Casciani V, Ferrero S, Litwicka K, Greco E. Efficiency of slush nitrogen vitrification of human oocytes vitirified with or without cumulus cells in relation to survival rate and meiotic spindle competence. Fertil Steril. 2012;5:1220–5.CrossRefGoogle Scholar
  43. 43.
    Wennerholm UB, Soderstrom-Anttila V, Bergh C, Aittomaki K, Hazekamp J, Nygren KG, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009;24:2158–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Vandervorst M, Liebaers I, Sermon K, Staessen C, De Vos A, Van de Velde H, et al. Successful pre-implantation genetic diagnosis is related to the number of available cumulus-oocyte complexes. Hum Reprod. 1998;13:3169–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Ludwig M, al-Hasani S, Küpker W, Bauer O, Diedrich K. A new indication for an intracytoplasmic sperm injection procedure outside male factor infertility. Eur J Obstet Gynecol Reprod Biol. 1997;75:207–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmatic sperm injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Nagy ZP, Liu J, Joris H, Verheyen G, Tournaye H, Camus M, et al. The results of intracytoplasmatic sperm injection is not related to any of the three basic sperm parameters. Hum Reprod. 1995;10:1123–9.PubMedGoogle Scholar
  48. 48.
    Melie NA, Adeniyi OA, Igbineweka OM, Ajayi RA. Predictive value of the number of oocytes retrieved at ultrasound-directed follicular aspiration with regard to fertilization rates and pregnancy outcome in intracytoplasmic sperm injection treatment cycles. Fertil Steril. 2003;80:1376–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Verberg MFG, Eijkemans MJC, Macklon NS, Heijnen EMEW, Baart EB, Hofmann FP. The clinical significance of the retrieval of a low number of oocytes following mild ovarian stimulation for IVF: a meta-analysis. Hum Reprod Update. 2009;15:5–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Hohmann FP, Macklon NS, Fauser BCJM. A randomized comparision of two ovarian stimulation protocols with gonadotrophin-releasing hormone (GnRH) antagonist cotreatment for in vitro fertilization commencing recombinant follicle-stimulating hormone on cycle day 2 or 5 with the standard long GnRH agonist protocol. J Clin Endocrinol Metab. 2003;88:166–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Timeva T, Milachich T, Antonova I, Arabaji T, Shterev A, Hatim O. Correlation between number of retrive oocytes and pregnancy rate after in vitro fertilization/intracytoplasmic sperm injection. Sci World J. 2006;6:686–90.CrossRefGoogle Scholar
  52. 52.
    Panadian Z, Bhattacharya S, Ozturk O, Serour GI, Templeton A. Number of embryos for transfer following in-vitro fertilization or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2004;18, CD003416.Google Scholar
  53. 53.
    Panadian Z, Bhattacharya S, Ozturk O, Serour GI, Templeton A. Number of embryos for transfer following in-vitro fertilization or intra-cytoplasmic sperm injection. Cochrane Database Syst Rev. 2009;18, CD003416.Google Scholar
  54. 54.
    Jonsdottir I, Lundin K, Bergh C. Double embryo transfer gives good pregnancy and live birth rates in poor responders with a modest increase in multiple birth rates: results from an observational study. Acta Obstet Gynecol Scand. 2011;90:761–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ermanno Greco
    • 1
  • Katarzyna Litwicka
    • 1
    Email author
  • Cristiana Arrivi
    • 1
  • Maria Teresa Varricchio
    • 1
  • Daniela Zavaglia
    • 1
  • Cecilia Mencacci
    • 1
  • Maria Giulia Minasi
    • 1
  1. 1.Assisted Reproduction CentreEuropean HospitalRomeItaly

Personalised recommendations