Skip to main content
Log in

Sequential FISH allows the determination of the segregation outcome and the presence of numerical anomalies in spermatozoa from a t(1;8;2)(q42;p21;p15) carrier

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To find out the meiotic segregation behaviour of the t(1;8;2)(q42;p21;p15), to evaluate the occurrence of interchromosomal effects, and to determine whether there is an accumulation of unbalanced products in aneuploid/diploid gametes.

Methods

A sequential FISH protocol based on two successive hybridization rounds over the same spermatozoa was performed to determine the segregation outcome of the rearranged chromosomes. The presence of numerical abnormalities for 13, 18, 21, X and Y was also evaluated by sperm FISH. Those aneuploid/diploid gametes were subsequently relocalized and analyzed for their segregation content through additional hybridization rounds.

Results

The segregation pattern observed reported a very low production of normal/balanced gametes (11.7 %). Significant increased frequencies of diploidies and disomies for chromosomes X/Y and 18 were detected (p < 0.001). Aneuploid and diploid spermatozoa displayed significant increases of 5:1, 6:0 and other unexpected disjunction modes (p < 0.001).

Conclusions

The strategy developed in this study is a reliable new approach to establish the full segregation pattern of complex chromosome rearrangements (CCR). Results corroborate the low number of normal/balanced spermatozoa produced by CCR carriers and support previous findings regarding an altered segregation pattern in gametes with numerical abnormalities. Altogether this confirms the importance of PGD as a tool to prevent the transmission of chromosomal abnormalities to the offspring in CCR patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anton E, Vidal F, Blanco J. Role of sperm FISH studies in the genetic reproductive advice of structural reorganization carriers. Hum Reprod. 2007;22:2088–92.

    Article  PubMed  CAS  Google Scholar 

  2. Blanco J, Egozcue J, Vidal F. Incidence of chromosome 21 disomy in human spermatozoa as determined by fluorescent in-situ hybridization. Hum Reprod. 1996;11:722-6.

    Google Scholar 

  3. Cifuentes P, Navarro J, Míguez L, Egozcue J, Benet J. Sperm segregation analysis of a complex chromosome rearrangement, 2;22;11, by whole chromosome painting. Cytogenet Cell Genet. 1998;82:204–9.

    Article  PubMed  CAS  Google Scholar 

  4. Coco R, Rahn MI, Estanga PG, Antonioli G, Solari AJ. A constitutional complex chromosome rearrangement involving meiotic arrest in an azoospermic male: case report. Hum Reprod. 2004;19:2784–90.

    Article  PubMed  CAS  Google Scholar 

  5. Escudero T, Estop A, Fischer J, Munne S. Preimplantation genetic diagnosis for complex chromosome rearrangements. Am J Med Genet. 2008;146A:1662–9.

    Article  PubMed  CAS  Google Scholar 

  6. Godo A, Blanco J, Vidal F, Anton E. Accumulation of numerical and structural chromosome imbalances in spermatozoa from reciprocal translocation carriers. Hum Reprod. 2013;28(3):840–9.

    Article  PubMed  CAS  Google Scholar 

  7. Johanisson R, Löhrs U, Passarge E. Pachytene analysis in males heterozygous for a familial translocation (9;12;13) (q22; q22; q32) ascertained through a child with partial trisomy 9. Cytogenet Cell Genet. 1988;47:160–6.

    Article  Google Scholar 

  8. Kim JW, Chang EM, Song S-H, Park SH, Yoon TK, Shim SH. Complex chromosomal rearrangements in infertile males: complexity of rearrangement affects spermatogenesis. Fertil Steril. 2011;95:349–52. 352.e1–5.

    Article  PubMed  Google Scholar 

  9. Kirkpatrick G, Ma S. Meiotic segregation and interchromosomal effects in a rare (1:2:10) complex chromosomal rearrangement. J Assist Reprod Gen. 2012;29:77–81.

    Article  Google Scholar 

  10. Lejeune J. Autosomal disorders. Pediatrics. 1963;32:326–37.

    PubMed  CAS  Google Scholar 

  11. Lim CK, Cho JW, Kim JY, Kang IS, Shim SH, Jun JH. A healthy live birth after successful preimplantation genetic diagnosis for carriers of complex chromosome rearrangements. Fertil Steril. 2008;90:1680–4.

    Article  PubMed  Google Scholar 

  12. Loup V, Bernicot I, Janssens P, Hedon B, Hamamah S, Pellestor F, et al. Combined FISH and PRINS sperm analysis of complex chromosome rearrangement t(1;19;13): an approach facilitating PGD. Mol Hum Reprod. 2010;16:111–6.

    Article  PubMed  CAS  Google Scholar 

  13. Lu PY, Hammit DG, Zinsmeister AR, Dewald GW. Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal males and a man with a t(2;4;8)(q23;q27;p21). Fertil Steril. 1994;62:394–9.

    PubMed  CAS  Google Scholar 

  14. Mau-Holzmann UA. Somatic chromosomal abnormalities in infertile men and women. Cytogenet Genome Res. 2005;111:317–36.

    Article  PubMed  CAS  Google Scholar 

  15. Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hédon B, et al. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update. 2011;17:476–94.

    Article  PubMed  CAS  Google Scholar 

  16. Pellestor F, Puechberty J, Weise A, Lefort G, Anahory T, Liehr T, et al. Meiotic segregation of complex reciprocal translocations: direct analysis of the spermatozoa of a t(5;13;14) carrier. Fertil Steril. 2011;7:2433.e17–22.

    Article  Google Scholar 

  17. Saadallah N, Hulten M. A complex three breakpoint translocation involving chromosomes 2, 4, and 9 identified by meiotic investigations of a human male ascertained for subfertility. Hum Genet. 1985;71:312–20.

    Article  PubMed  CAS  Google Scholar 

  18. Sarrate Z, Anton E. Fluorescent in situ hybridization (FISH) protocl in human sperm. J Vis Exp. 2009;31.

  19. Sarrate Z, Vidal F, Blanco J. Role of sperm fluorescent in situ hybridization studies in infertile patients: indications, study approach, and clinical relevance. Fertil Steril. 2010;93:1892-902.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the projects SAF2010-22241 (Ministerio de Ciencia e Innovación, España), SGR2009-282 (Generalitat de Catalunya) and UAB CF-180034 (Universitat Autònoma de Barcelona). A.G. is a recipient of a grant FI-DGR 2012 (Generalitat de Catalunya).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Anton.

Additional information

Capsule

The study reveals a low production of normal/balanced gametes in a t(1;8;2)(q42;p21;p15) carrier and supports previous findings related to the presence of an altered segregation pattern in gametes with numerical abnormalities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godo, A., Blanco, J., Vidal, F. et al. Sequential FISH allows the determination of the segregation outcome and the presence of numerical anomalies in spermatozoa from a t(1;8;2)(q42;p21;p15) carrier. J Assist Reprod Genet 30, 1115–1123 (2013). https://doi.org/10.1007/s10815-013-0063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0063-5

Keywords

Navigation